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ABSTRACT

 Flooding remains one of the most prevalent and destructive natural hazards, threatening 
infrastructure, livelihoods, and communities worldwide. This study conducted a systematic assessment of 
flood vulnerability in Nabunturan, Davao de Oro, a municipality prone to recurrent flooding. Utilizing the 
UNESCO-IHE flood vulnerability indicators, the research examined the Social, Economic, Environmental, 
and Physical components of vulnerability. These indicators were categorized into three subdimensions—
exposure, susceptibility, and resilience—and were evaluated using the Fuzzy Delphi Method (FDM) to 
achieve expert consensus, followed by the Analytical Hierarchy Process (AHP) to prioritize key factors 
influencing flood vulnerability. The study identified and prioritized 27 flood vulnerability indicators, with 
normalized weights (ranging from 0 to 1) derived from the Fuzzy Delphi Method (FDM) and Analytical 
Hierarchy Process (AHP), reflecting the relative importance of each factor. Higher-weighted indicators 
serve as the basis for prioritization of risk reduction actions and resilience-building efforts. The study 
revealed the indicators with the highest weights per component, arranged in exposure, susceptibility, 
and resilience, respectively. Social Component: Population in Flood-prone Areas (0.3114); Past Experience 
(0.4314); Shelters/Hospitals (0.2685). Economic Component: Land Use (0.5230); Quality of Infrastructure 
(0.6149); Amount of Investment (1.0). Environmental Component: Degraded Area (1.0); Rainfall (0.5091); 
Green Area (1.0). Physical Component: Topography (0.2958); Frequency of Occurrence (1.0); Dikes/
Levees (1.0). The weighted indicators can support the computation of a Flood Vulnerability Index (FVI), 
informing Barangay Disaster Risk Reduction and Management Plans (BDRRMPs), enhancing the Climate 
and Disaster Risk Assessment (CDRA), and guiding targeted risk reduction and adaptation programs. 

Keywords: Analytical Hierarchy Process (AHP), Disaster Risk Reduction (DRR), Delphi Fuzzy Method (FDM), 
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INTRODUCTION

 Flooding remains one of the most recurrent 
and destructive natural hazards globally, 
contributing to significant economic losses, 
population displacements, and the disruption of 
critical infrastructure (UNDRR, 2019). The growing 
frequency and severity of flood events in recent 
decades have been closely linked to the intensifying 
impacts of climate change, particularly rising 
sea levels, altered precipitation regimes, and 
unsustainable land-use changes (IPCC, 2021). 
Situated along the typhoon-prone western Pacific 
belt, the Philippines consistently ranks among the 
most climate-vulnerable countries worldwide. 
From 2000 to 2019, it placed fourth globally in 
the Global Climate Risk Index, underscoring its
chronic exposure to extreme weather events 
and the socio-economic consequences they entail 
(Eckstein et al., 2021).

 This national vulnerability is mirrored 
at the municipal level, particularly in regions like 
Nabunturan, Davao de Oro. A landlocked 
municipality characterized by a mix of mountainous 
terrain and lowland settlements, Nabunturan 
faces compound flood risks. From 2014 to early 
2022, the municipality experienced 13 notable 
flood events. During January 26–31, 2019, flooding 
caused by heavy rains, about 241 families across 
the municipality were affected, and total damages 
to properties, including infrastructure and 
agriculture, amounted to approximately 
₱12,720,461.11 (CDRA, 2022). Municipal disaster 
reports and vulnerability assessments confirm 
that floods frequently disrupt agriculture, damage 
homes, and threaten livelihoods in multiple 
barangays. Similar conditions have been 
documented in neighboring provinces such as 
Davao Oriental, where flood exposure correlates 
strongly with population settlements near rivers 
and altered land cover (Cabrera and Lee, 2018).

 While the Disaster Risk Reduction and 
Management (DRRM) frameworks have been 
institutionalized in the Philippines through the 
Philippine DRRM Act of 2010, challenges in 
shifting from reactive to proactive approaches 
persist (Orencio and Fujii, 2013; Bankoff and 
Hilhorst, 2009). Many local interventions continue 
to prioritize emergency response, often with 
limited integration of proactive, evidence-based 
vulnerability assessments. This tendency may be 

partly due to the scarcity of localized, 
multidimensional data needed to support 
anticipatory planning (Nakasu and Amrapala, 
2023). Orencio and Fujii (2013) observed that 
several Philippine LGUs still tend to adopt reactive, 
response-oriented strategies rather than proactive 
vulnerability reduction. These systemic challenges 
can constrain local governments’ ability to 
allocate resources efficiently, potentially
contributing to recurring disaster losses and slow 
recovery (Cutter and Finch, 2008).

 Flood vulnerability is inherently 
multidimensional, encompassing not only physical 
exposure but also social susceptibility and 
adaptive capacity. These three dimensions—
exposure, susceptibility, and resilience—jointly 
determine the severity of a population’s response 
to flood hazards and must be systematically 
assessed to inform risk reduction (Nasiri and 
Shahmohammadi-Kalalagh, 2013; Cardona et al., 
2012; Rehman et al., 2019). However, many flood 
risk models continue to prioritize topographical 
and hydrological parameters while overlooking 
socio-economic and environmental indicators. 
This imbalance can result in assessments that 
miss critical vulnerabilities, particularly among 
marginalized or underserved communities.

 Recent advances in spatial analytics 
and decision-support frameworks offer tools to 
address this gap. Geographic Information Systems 
(GIS), when combined with Multi-Criteria 
Decision-Making (MCDM) techniques such as the 
Analytical Hierarchy Process (AHP), enable the 
integration of diverse indicators into comprehensive 
vulnerability assessments. For example, Efraimidou 
and Spiliotis (2024) employed a GIS-DEMATEL 
framework to evaluate flood risks in northeastern 
Greece, highlighting how such methods can 
model interdependencies among indicators. 
Nevertheless, many existing approaches lack 
participatory validation, and the absence of expert-
informed indicator selection undermines the 
local applicability of findings (Jamshed et al., 
2020).
 To address these methodological and 
contextual gaps, this study introduces a localized, 
indicator-based flood vulnerability assessment 
for Nabunturan, Davao de Oro. The approach 
integrates the Fuzzy Delphi Method (FDM) to 
validate a set of indicators—categorized under 
social, economic, environmental, and physical 
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domains—and the AHP to derive expert-informed 
weights based on their perceived importance. 
These indicators are further structured by 
subdimensions of exposure, susceptibility, and 
resilience, ensuring theoretical coherence and 
practical applicability (Lee et al., 2013; Mourato 
et al., 2023).

 The primary output of this study is a set 
of weighted flood vulnerability indicators derived 
through AHP, offering an empirically grounded 
framework for prioritizing flood-related risks 
across barangays. These weights not only support 
the generation of spatial flood vulnerability maps 
but also serve as decision-support inputs for land 
use planning, infrastructure development, and 
local DRRM programming in Nabunturan 
(Saaty, 2008). In doing so, the study contributes 
to the expanding literature on quantitative, 
participatory risk assessment and demonstrates 
the utility of hybrid FDM-AHP frameworks in 
climate-vulnerable municipalities (Fatemi et al., 
2017; Birkmann et al., 2013).

 This study aims to develop and prioritize 
social, economic, environmental, and physical 
flood vulnerability indicators for Nabunturan, 
Davao de Oro, utilizing the Fuzzy Delphi Method 
(FDM) for expert validation and the Analytical 
Hierarchy Process (AHP) for weighting. The 

results will guide the identification of priority 
areas for flood risk management and support 
the formulation of localized policy strategies 
and resilience measures aligned with municipal 
and barangay-level climate adaptation and 
disaster preparedness planning.

MATERIALS AND METHODS

Description of the study area

 Nabunturan, located in the northeastern 
part of Davao de Oro, Philippines, is positioned 
at 7°41′ north latitude and 125°27′ east longitude 
(Figure 1). It is situated 88 kilometers from Davao 
City and 33 kilometers from Tagum City. As the 
capital town of Davao de Oro, Nabunturan served 
as the province’s administrative and economic 
center, supporting a blend of urban and rural 
communities, with a population of 84,340 
(Philippine Statistics Authority, 2021). Nabunturan 
shared boundaries with Montevista to the north, 
New Corella to the west, Mawab to the southwest, 
Maco and Mabini to the south, Maragusan to the 
southeast, New Bataan to the east, and Compostela 
to the northeast. The municipality covered 
approximately 26,999 hectares, comprising 28 
barangays and 40 sitios, all interconnected by 
a network of roads and bridges (Municipality 
of Nabunturan, 2024).

Figure 1. Map of Nabunturan, Davao de Oro, showing the 28 barangays covered in the study.
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 The geographic characteristics of 
Nabunturan make most areas susceptible to 
flooding and landslides. Disasters significantly 
disrupt economic activities, particularly agriculture, 
which occupies 16,512.96 hectares of the 
municipality’s land and serves as the primary 
livelihood. Public health is also threatened by 
waterborne diseases and delayed medical 
access during floods. Despite existing evacuation 
policies and centers, displacement disrupts 
community well-being. Flooding often damages 
roads and infrastructure, and while residents 
have adapted to recurring hazards, resilience 
alone cannot fully protect lives and property. 
Notably, Super Typhoon Pablo caused ₱500 
million in agricultural losses and over ₱200 
million in infrastructure damages (CDRA, 2022).

Data collection and instrument

 This study employed a descriptive quantitative
 research design, firmly grounded in ethical 
standards and community engagement principles. 
The initial stage involved the distribution of 
courtesy letters to barangay leaders to formally 
request consent for participation in the research 
process. This protocol served as a foundational 
step in establishing rapport, building trust, and 
fostering collaboration with local stakeholders—
an essential aspect for ensuring the validity and 

reliability of the data collected. Subsequently, 
formal approval and consent were sought from 
the local government unit to ensure alignment 
with local governance protocols and secure 
community endorsement.

 Figure 2 shows the phases conducted in 
this study. Following the ethical groundwork, the 
data collection process incorporated expert opinion 
surveys to evaluate flood vulnerability indicators. 
This study employed a structured questionnaire 
adapted from the UNESCO-IHE Institute of Water 
Education, a globally recognized framework for 
flood risk assessments and water-related research 
(Balica, 2012). The questionnaire was meticulously 
developed to gather empirical data on the social, 
economic, environmental, and physical indicators 
of flood vulnerability and to be used to identify 
vulnerability indicators specific to Nabunturan, 
Davao de Oro (Abdullah and Yusof, 2018; Pelone 
et al., 2024; Pelone and Sanchez, 2024). The Fuzzy 
Delphi Method (FDM) survey was conducted 
face-to-face using printed questionnaires in August 
2024, allowing direct engagement with experts for 
richer data validation. Meanwhile, the Analytical 
Hierarchy Process (AHP) survey was conducted 
asynchronously through Google Forms in March 
2025, ensuring broader expert participation while 
accommodating their availability.

UNESCO-IHE Flood Vulnerability Indicators

FUZZY DELPHI METHOD (FDM)
  -Fuzzification Spectrum
  -Fuzzy Values Aggregation
  -Triangular Fuzzy Numbers and Defuzzification
  -Threshold and Item Acceptability Criteria

ANALYTICAL HIERARCHY PROCESS (AHP)
  -Pairwise Comparison Matrix
  -Weight Derivation
  -Consistency Ratio (CR)
  -Ranking of Indicators
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Figure 2. Integrated FDM–AHP Approach for Developing Flood Vulnerability Indicator Weightsw
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 A five-point Likert scale (see Table 2) was 
used to assess the perceived influence of each 
vulnerability component, where 1 represented 
“Very Low Influence” and 5 indicated “Very High 
Influence.”, was utilized to systematically assess 
the varying degrees of influence of each 
vulnerability component. This methodological 
approach enabled a nuanced quantification of 
vulnerability factors, minimizing subjectivity 
while ensuring analytical rigor (Ismail, Mohamed, 
and Hamzah, 2019)

 The FDM was employed to enhance 
indicator accuracy through expert consensus, 
enabling systematic evaluation of each indicator’s 
weight and relevance. The Triangular Fuzzy 
Number (TFN) method was applied to transform 
Likert-scale responses into fuzzy numerical values, 
reducing ambiguity and improving decision-
making accuracy (Hsu and Sandford, 2007)

 In the second phase of expert validation, 
the AHP was employed to systematically rank and 
prioritize flood vulnerability indicators. A pairwise 
comparison approach was utilized, allowing 
experts to assign weights to various vulnerability 
components based on their perceived significance 
in flood susceptibility (Saaty, 1980). The AHP 
methodology provided a structured, objective 
framework for multi-criteria decision-making, 
ensuring that social, economic, environmental, 
and physical flood vulnerability factors were 
appropriately weighted according to expert 
judgment and empirical data (Balica and Wright, 
2010).

Expert Panel and Validation Procedures

 The selection of experts followed established 
guidelines for FDM and AHP-based studies. 
Seventeen (17) experts participated in the FDM 
survey, representing fields such as disaster risk 
management, flood vulnerability research, 
environmental science, and urban and environmental 
planning. The panel included 4 experts from 
the Municipal Planning and Development Office 
(MPDC) – Nabunturan, 2 from the Municipal 
Agriculture Office (MAGRO), 1 from the Municipal 
Disaster Risk Reduction and Management Office 
(MDRRMO), 6 from the Provincial Disaster Risk 
Reduction and Management Office (PDRRMO) – 
Davao de Oro, and 4 from the Provincial Planning 
and Development Office (PPDO) – Davao de Oro.

 For the AHP process, a separate panel of 11 
experts was convened, comprising 2 from the 
academe, 3 from the City Disaster Risk Reduction 
and Management Office (CDRRMO), 2 from 
MDRRMO, 1 from the Office of Civil Defense (OCD), 
2 from the PDRRMO, and 1 from the MPDC. The 
sample sizes align with best practices in previous 
flood risk modeling studies, which recommend 
a minimum of 10 experts for FDM and 5–10 
for AHP to ensure methodological robustness 
(Habibi et al., 2015; Mohamed Yusoff et al., 2021). 

 Both the FDM and AHP experts were 
purposively selected based on their specialized 
knowledge and relevance to the study’s focus 
areas. For the FDM process, experts were drawn 
primarily from the Nabunturan LGU and the 
Provincial Government of Davao de Oro, as these 
professionals possess direct experience and 
contextual understanding of the municipality’s 
flood dynamics, disaster risk patterns, and local 
governance structures. Their localized insights 
were critical in identifying and validating relevant 
flood vulnerability indicators.

 For the AHP phase, the panel included 
experts from outside Nabunturan to introduce 
broader technical perspectives and minimize 
potential biases that may arise from localized 
familiarity. This inclusion of external experts 
ensured a balance between local knowledge and 
wider methodological rigor, consistent with best 
practices that recommend incorporating diverse 
expert views to enhance the generalizability and 
robustness of multi-criteria decision analyses (Hsu 
and Sandford, 2007) 

 Selection criteria required that all experts 
possess a minimum of five years of professional 
experience in disaster risk management, 
environmental planning, flood vulnerability research, 
or closely related fields. This methodological 
approach strengthens the credibility and validity 
of the study outcomes, as recommended in expert 
elicitation and decision-making studies.

 By integrating UNESCO-IHE indicators, 
Fuzzy Delphi, and AHP methodologies, this study 
ensures a scientifically rigorous and data-driven 
approach to flood vulnerability assessment. The 
findings derived from these instruments provide 
critical insights into Nabunturan’s flood risk profile, 
reinforcing evidence-based disaster mitigation 
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strategies, land-use planning, and climate resilience 
initiatives (Pelone et al., 2024; Balica, 2013).

Data Analysis

Fuzzy Delphi Method (FDM)
 
 The FDM is an enhanced version of the 
Delphi Method (Table 1) that utilizes triangulation 

statistics to determine the level of consensus 
among the expert panel (Shelton and Creghan, 
2015). As presented on Table 1, it was implemented 
in this study to identify the flood vulnerability
indicators, reducing the possibility of ambiguity, 
diversity, and discrepancy in the perspectives 
provided by subject matter experts, enhancing the 
overall quality of the selected items (Manakandan 
et al., 2017).

Table 1. The subsequent phases of Fuzzy Delphi Method as stated by Habibi et al. (2015).

Fuzzy Delphi Method (FDM)

1. Identification of a suitable spectrum for the fuzzification of linguistic expressions.
2. Fuzzy aggregation of the fuzzified values.
3. Triangular Fuzzy Numbers and the Defuzzification Process.
4. Selection of the threshold and item acceptability criteria.

 The fuzzy spectra presented in Table 2 were 
employed in this study to represent a five-point 
Likert scale. The data analysis began by determining 
the TFN for each indicator, which involves 
organizing the three parameters: m₁, m₂, and m₃. 
Specifically, m₁ denotes the lowest possible value 

assigned by the experts, m₂ reflects the most 
plausible or reasonable value, and m₃ indicates the 
highest possible value. These values collectively 
form the fuzzy interval used to capture the 
uncertainty and subjectivity inherent in expert 
evaluations.

Table 1. Triangular fuzzy numbers for a 5-point Likert scale.

Linguistic Expressions  Linguistic Equivalent  Fuzzy Number

Very High Influence  5    (0.6, 0.8, 1)
High Influence   4    (0.4, 0.6, 0.8)
Moderate Influence  3    (0.2, 0.4, 0.6)
Low Influence   2    (0, 0.2, 0.4)
Very Low Influence  1    (0, 0, 0.2)

 Defuzzification of the resultant values 
was essential to finalize the aggregation of expert 
opinions using fuzzy logic. Mohamed Yusoff et 
al. (2021) state that the utilization of the FDM 
technique necessitates the inclusion of the triangular 
fuzzy numbers and the defuzzification process as 
essential components. Triangular fuzzy numbers 
have two specific criteria that must be met. The 
first condition is that the value of threshold (d) 
must be less than or equal to 0.2. When the result is 
0.2 or lower, the experts reach a consensus. 

 Equation (1) is the formula for the calculation 
of the threshold (d) value. (Mohamed Yusoff et al., 
2021).

where:

 M = the mean value of a fuzzy number,
 m = represents a fuzzy number assigned   
         by each expert for each item.

 The defuzzification process has been 
made in the data analysis process in the FDM. It 
is the process of determining the relative  weight  
value  of  each  criterion  to  decide  the  sequence  of 
the  weight  value  and  the  importance  level  of each 
indicator (Hao-Chang, 2020). The defuzzification 
value for every item has to be more than the 
α-cut value = 0.5. In this process, the equation 
presented below was used.

d (M,m) = √(   [(M₁ - m₁ )2 + (M₂-m2)2 + (M33 - m3 )2]1
2 (1)
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 Equation (2) is the formula for determining 
the defuzzification value. (Mohamed et al., 2019; 
Abdullah and Yusof, 2018; Pelone and Sanchez, 
2024).

                          A=    *(m1+m2+m3)   (2)

where: 
              m = mean.

 The next criterion for the defuzzification is 
the necessity of obtaining a level of agreement among 
experts, expressed as a percentage. In accordance 
with the traditional Delphi process, a suggestion 
is deemed acceptable if the consensus among the 
expert group exceeds 75%. The formula below was 
used in the study (Equation 3).

 Equation (3) is the formula for the 
calculation of consensus percentage.

 

       (∑Experts   ∑Items)-(Total Responses>0.2) 
           (∑Experts  ∑Items)

Analytical Hierarchy Process (AHP)

 The AHP is a robust multi-criteria decision-
making (MCDM) method developed by Saaty (1980, 
2005), designed to tackle complex problems by 
structuring them into a hierarchical framework. 
It facilitates systematic evaluation of alternatives 
by incorporating both qualitative and quantitative 
factors through expert judgment, as presented on 
Table 3. Central to the AHP methodology is the use 
of pairwise comparisons, wherein experts evaluate 
the relative importance of criteria, enabling the 
construction of a reciprocal matrix that yields 
normalized priority weights (Abdullah and Yusof, 
2018; Vaidya and Kumar, 2006).

1
2  

[ [

* 100*
*

Table 3. Schematic representation of the AHP framework used for flood vulnerability indicator 
weighting (Adapted from Saaty, 2005).

ANALYTICAL HIERARCHY PROCESS (AHP)

-Pairwise Comparison Matrix
-Weight Derivation
-Consistency Ratio (CR)
-Ranking of Indicators

 This method has been extensively applied 
in disaster risk management, particularly in flood 
vulnerability assessments, due to its ability to 
integrate subjective expert insights with analytical 
rigor (Rehman et al., 2019). In this context, AHP 
allows for the prioritization of vulnerability 
indicators across domains such as social, economic, 
environmental, and physical dimensions. The 
process involves deriving consistency ratios (CR) 
to ensure logical coherence in judgments, followed 
by ranking based on computed weights, thus 
promoting transparency and evidence-based 
decision-making (Saaty, 2008; Pelone and Sanchez, 
2024). The application of AHP ultimately strengthens 
the reliability of indicator-based assessments 
used in planning, resource allocation, and policy 
formulation.

Pairwise Comparison Matrix Construction

 The process begins by constructing a 
pairwise comparison matrix, where experts 
evaluate the relative importance between each 

pair of indicators. The equation used is as follows:

where:

 aij = is the relative importance of 
         indicator i over j,
               wi, wj = are the weights of indicators i and j,
 n = is the total number of indicators 
         being compared.

 This matrix serves as the foundation for 
calculating the weights of each criterion through 
reciprocal judgments (Abdullah and Yusof, 2018; 
Pelone and Sanchez, 2024).

Normalization of the Comparison Matrix

 Once the matrix is completed, normalization 
is performed by dividing each element in a column 
by the maximum value of that column:

 aij           =                                            (5)

aij=     for   i,j=1,2,...,n          (4)
wi
wj

(3)

 norm
aij
maxaij

,   i,j

A
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 This normalization process ensures 
uniformity and transforms the matrix values into 
a comparable scale, enabling the derivation of 
consistent priority vectors (Abdullah and Yusof, 
2018; Pelone and Sanchez, 2024).

Derivation of Weights Using Eigenvector

 The eigenvector (wi) is calculated by 
taking the average of each row in the normalized 
matrix:

  wi=    ,   i                           (6)

where:

 âi =is the sum of the normalized    
      row values for the indicator i,
       n is the number of criteria.
 
 This step yields the priority weights of each 
indicator, representing their relative importance 

in decision-making (Saaty, 2005).

Consistency Check

 The next step is verifying the internal 
consistency of the pairwise comparison matrix, 
which is crucial for ensuring the reliability of 
expert judgments. The Consistency Index (CI) is 
computed using the formula:

         λmax  - n
            n - 1                          (7)                    

 where λmax is the maximum eigenvalue 
of the matrix and n is the number of criteria or 
indicators being compared. The CI is then compared 
to the Random Index (RI) (see Table 4), which is 
a standard reference value that depends on the 
matrix size. Saaty (2005) provided RI values for 
matrices of various sizes, as shown in Table 4.

âi
n

A CI= 

Table 4. Ratio Index (Saaty, 2005).

n 1 2 3 4 5 6 7 8 9 10
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

          CI
          RI

 The consistency ratio (CR) is then computed 
to assess the acceptability of the CI value: 

      (8)

 where RI is the random index, dependent 
on matrix size n, as shown in Table 4 (Saaty, 2005). 

 A matrix is considered consistent if the 
CR is less than or equal to 0.10 (10%), indicating 
that the pairwise comparisons are logically 
sound (Abdullah and Yusof, 2018; Pelone and 
Sanchez, 2024; Saaty, 2005). If the CR exceeds 
this threshold, the matrix must be revised by 
the panel of experts to improve its consistency.

Final Weight Derivation and Ranking

 The final step involves the extraction 
of the priority vector, which contains the final 
weights of the indicators. This is expressed as:

 W' = (d' (A1),d' (A2),…,d' (An))T     (9)

 This weight vector is then used to rank the 
indicators from most to least significant in terms 

of their contribution to flood vulnerability. The 
derived rankings guide decision-makers in prior-
itizing actions and resource allocation for flood 
mitigation (Abdullah and Yusof, 2018; Pelone and 
Sanchez, 2024).

RESULTS

Validated Flood Vulnerability Indicators

 The FDM was employed to identify and 
validate relevant flood vulnerability indicators 
under four key components: Social, Economic, 
Environmental, and Physical. The initial list of 
indicators was derived from the UNESCO-IHE 
Flood Vulnerability Indicator framework (Bal-
ica, Wright, and van der Meulen, 2012), which 
provided a comprehensive foundation based on 
internationally recognized parameters. A panel of 
17 experts was engaged to evaluate each indicator 
using a 5-point Likert scale. Their responses were 
converted into triangular fuzzy numbers to 
facilitate analysis. Indicators that met the 
established acceptance criteria—specifically, a 
threshold value (d) of ≤ 0.2, an expert consensus 
level of ≥ 75%, and a defuzzified score (α-cut) 

CR = 
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of ≥ 0.5—were deemed valid and carried forward 
to the next phase of the study.

Social Flood Vulnerability Indicators

 Social vulnerability pertains to the degree 
to which a population is predisposed to and 
incapable of withstanding adverse impacts of 
natural hazards, particularly due to social, 
economic, and demographic constraints. It 
encapsulates not only the exposure of individuals 
to hazards but also their limited capacity to cope 
with, adapt to, and recover from such events 
(Cutter et al., 2003; Wisner et al., 2004). In the 
context of flooding, vulnerability is intensified 
by unequal access to resources, poor housing 
conditions, inadequate infrastructure, and 

systemic social inequalities. These conditions 
render certain groups disproportionately at risk 
and hinder their ability to respond effectively to 
disaster impacts (Birkmann, 2006; Razzaghi Asl et 
al., 2025). 

 Table 5 presents the validated social flood 
vulnerability indicators through the FDM. From 
the total of 19 social indicators evaluated, 11 
indicators were accepted after meeting the 
inclusion criteria: a defuzzified score (α-cut) ≥ 
0.5, consensus ≥ 75%, and a threshold value (d) 
≤ 0.2. The indicators were classified into three 
subdimensions: Exposure, Susceptibility, and 
Resilience, following the social component 
structure adapted from recent vulnerability 
frameworks (Abarquez and Murshed, 2004).

Table 5. FDM results for Social Flood Vulnerability Indicators.

Component

SOCIAL

Indicator

Population in a flood-prone area
Rural population
Chi000000000ld Mortality
Transboundary River Commission
Past Experience
Awareness & Preparedness
Communication Penetration Rate
Warning system
Evacuation Roads
Disabled People
Human Development Index
Population density
Cultural Heritage
Population growth
Slums
Cadastral Survey
Shelters/Hospitals
Emergency Service
Institutional Capacity

Fuzzy 
score

0.706
0.647
0.435
0.565
0.671
0.635
0.635
0.706
0.635
0.647
0.576
0.553
0.475
0.541
0.518
0.451
0.600
0.706
0.647

d Value

0.144
0.126
0.228
0.202
0.137
0.174
0.155
0.122
0.174
0.144
0.169
0.131
0.213
0.140
0.144
0.165
0.188
0.122
0.126

Consensus 
(%)

82.35
88.24
47.06
47.06
88.24
70.59
70.59
88.24
70.59
82.35
58.82
76.47
47.06
76.47
76.47
70.59
94.12
88.24
82.35

Verdict

Accepted
Accepted
Rejected
Rejected
Accepted
Rejected
Rejected
Accepted
Rejected
Accepted
Rejected
Accepted
Rejected
Accepted
Accepted
Rejected
Accepted
Accepted
Accepted

 Under the Exposure subdimension, the 
indicators Population in Flood-Prone Area, Rural 
Population, Population Density, and Population 
Growth were accepted. These indicators emphasize 
spatial concentration and demographic pressure 
in flood-prone areas—conditions strongly linked 
to increased disaster risk in rural and peri-urban 
settlements (Zhou et al., 2022).

 The Susceptibility subdimension included 
Past Experience, Disabled People, and Slums. These 

reflect the heightened vulnerability of groups with 
limited coping capacity or constrained mobility 
during floods. Past disaster experience has also 
been recognized as a proxy for perceived risk and 
awareness, influencing future preparedness (Alves 
et al., 2021).

 For Resilience, four indicators were 
validated: Shelters/Hospitals, Warning System, 
Emergency Service, and Institutional Capacity. These 
represent adaptive capacities at the household 
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and governance levels that enable communities 
to respond effectively to flooding. Recent studies 
have shown that robust institutional systems and 
access to emergency infrastructure significantly 
reduce post-disaster impacts (Mavhura, 2017).

Economic Flood Vulnerability Indicators

 The economic indicators that passed 
the FDM screening include Land Use, Quality of 
Infrastructure, Amount of Investment, Unemployment, 
Urbanized Area, and Industries (see Table 6). 
These indicators reflect critical structural and 
financial conditions that influence a community’s 

susceptibility to flood-related disruptions.

 Land Use and Urbanized Area are essential 
for understanding how spatial development 
patterns contribute to surface runoff and exposure. 
Densely built environments with inadequate 
zoning often exacerbate flood impacts, particularly 
in low-lying and unregulated settlements. The 
inclusion of Quality of Infrastructure and Amount 
of Investment points to the importance of robust 
physical systems and financial allocation in 
mitigating risks and supporting recovery 
(Mavhura, 2017).

Table 6. FDM results for Economic Flood Vulnerability Indicators.

Component

ECONOMIC

Indicator

Land Use

Inequality

Quality of infrastructure

Amount of Investment

Economic Recovery

Storage capacity over yearly 

discharge

Unemployment

Life expectancy Index

Flood Insurance

Dams Storage capacity

Urbanized Area

Industries

Contact with River

Recovery time

Drainage system

Infrastructure Management

Fuzzy 
score

0.706

0.447

0.729

0.694

0.659

0.529

0.541

0.435

0.494

0.624

0.671

0.647

0.612

0.494

0.635

0.682

d Value

0.122

0.131

0.100

0.112

0.166

0.154

0.140

0.116

0.136

0.166

0.137

0.126

0.155

0.145

0.155

0.138

Consensus 
(%)

88.24

76.47

94.12

94.12

70.59

70.59

76.47

82.35

82.35

70.59

88.24

82.35

70.59

76.47

70.59

70.59

Verdict

Accepted

Rejected

Accepted

Accepted

Rejected

Rejected

Accepted

Rejected

Rejected

Rejected

Accepted

Accepted

Rejected

Rejected

Rejected

Rejected

 From a labor and production perspective, 
Unemployment and Industries highlight economic 
fragility and exposure in the event of flood 
disasters. High unemployment can weaken 
household resilience, while disruptions to industrial 
zones may cause cascading economic losses at 
the municipal scale (Nguyen et al., 2021). These 
findings reinforce the view that economic 
vulnerability is shaped not only by income 
levels but also by the configuration of assets, 

development priorities, and employment dynamics.

Environmental Flood Vulnerability Indicators

 The environmental indicators that passed 
the FDM validation include Rainfall, Degraded 
Area, Urban Growth, and Green Area (see Table 
7). These indicators highlight key ecological and 
landscape factors that significantly influence
flood exposure and the environmental system’s 
capacity to cope with such hazards.
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Table 7. FDM results for Environmental Flood Vulnerability Indicators.

Component

ENVIRONMENTAL

Indicator

Rainfall
Degraded Area
Unpopulated Area
Forested Area
Types of Vegetation
Natural Reservation
Evaporation rate
Urban Growth
Ground Water Level
Environmental Recovery
Green Area

Fuzzy 
score

0.788
0.706
0.486
0.627
0.553
0.647
0.494
0.553
0.612
0.588
0.659

d Value

0.022
0.122
0.202
0.204
0.202
0.180
0.147
0.131
0.177
0.158
0.166

Consensus 
(%)

100.00
88.24
52.94
76.47
41.18
70.59
52.94
76.47
64.71
52.94
76.47

Verdict

Accepted
Accepted
Rejected
Rejected
Rejected
Rejected
Rejected
Accepted
Rejected
Rejected
Accepted

 Rainfall, with the highest consensus 
and lowest threshold (d = 0.022), was strongly 
validated by the experts. This emphasizes the 
direct relationship between rainfall intensity 
and flood occurrences, as excessive precipitation 
remains a primary trigger of flood events (Robbani 
et al., 2020). Degraded Area, also highly rated, 
reflects the vulnerability created by land 
degradation processes such as deforestation, 
erosion, and urban encroachment, which 
exacerbate runoff and reduce natural absorption 
capacity (El Mazi et al., 2022).

 Urban Growth signifies expanding 
impervious surfaces that hinder water infiltration 
and increase surface runoff, further aggravating 
flood risks in developing areas. Meanwhile, the 

inclusion of Green Area underscores the 
importance of vegetation cover in mitigating 
flood impacts by enhancing water retention and 
regulating runoff patterns (Liu et al., 2014; Sohn et 
al., 2020).

Physical Flood Vulnerability Indicators

 Among the physical indicators assessed, 
six were validated by the expert panel: Topography, 
Number of Days with Rainfall, Frequency of 
Occurrence, Dikes/Levees, Flood Water Depth, and 
Proximity to River (see Table 8). These indicators 
encapsulate the geophysical attributes that directly 
influence flood behavior, exposure levels, and the 
overall impact on affected communities.

Table 8. FDM results for Physical Flood Vulnerability Indicators.

Component

PHYSICAL

Indicator

Topography
Number of days with rainfall
River Discharge
Frequency of occurrence
Evaporation Rate/Rainfall
Flood Duration
Dam’s Storage capacity
Sedimentation Load
Contact with River
Dikes/Levees
Flood Water Depth
Building Codes
Proximity to river

Fuzzy 
score

0.765
0.776
0.647
0.729
0.624
0.659
0.647
0.635
0.635
0.682
0.741
0.612
0.694

d Value

0.058
0.042
0.216
0.108
0.208
0.166
0.216
0.155
0.174
0.138
0.083
0.155
0.149

Consensus 
(%)

100.00%
100.00%
76.47%
94.12%
70.59%
70.59%
70.59%
70.59%
64.71%
82.35%
100.00%
70.59%
76.47%

Verdict

Accepted
Accepted
Rejected
Accepted
Rejected
Rejected
Rejected
Rejected
Rejected
Accepted
Accepted
Rejected
Accepted
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 Topography and Number of Days with 
Rainfall received perfect consensus scores (100%) 
with low d-values, highlighting the experts’ strong 
agreement on their critical role. Steep or low-lying 
terrains can accelerate runoff or accumulate 
floodwaters, making topography a fundamental 
determinant of flood risk (Tayyab et al., 2021). 
Similarly, the frequency of rainfall days increases 
the cumulative saturation of the soil, leading to 
reduced infiltration and higher surface runoff.

 The Frequency of Occurrence also garnered 
strong consensus, emphasizing the importance of 
historical flood events in forecasting future risk 
patterns. Flood Water Depth, another highly rated 
indicator, reflects the severity of flooding and 
its potential to damage property and endanger 
lives (Khosravi et al., 2016). The structural role of 

Dikes/Levees in mitigating flood spread was also 
recognized, aligning with infrastructure-based risk 
reduction strategies.

Weights and Prioritization of Indicators

 The AHP allows for the systematic 
weighting of criteria based on expert judgments, 
ensuring objectivity and consistency in decision-
making (Saaty, 2008; Vaidya and Kumar, 2006). In 
this study, validated indicators from the FDM were 
subjected to AHP pairwise comparison to derive 
relative weights, rank their importance, and check 
consistency (see Table 9). Indicators with higher 
weights are considered more critical for flood 
vulnerability assessment, thereby providing 
evidence-based guidance for risk reduction 
planning.

Table 9. Analytical Hierarchy Process (AHP) Results.

Component

SOCIAL

ECONOMIC

ENVIRONMENTAL

PHYSICAL

Subdimension

Exposure

Susceptibility

Resilience

Exposure

Susceptibility

Resilience
Exposure
Susceptibility

Resilience
Exposure

Susceptibility
Resilience

Indicator

Population in Flood Prone Area
Rural population
Population Density
Population Growth
Past Experience
Disabled People
Slums
Shelters/Hospitals
Warning System
Emergency Service
Institutional Capacity
Land Use
Industries
Urbanized Areas
Quality of Infrastructure
Unemployment
Amount of Investment
Degraded Area
Rainfall
Urban Growth
Green Area
Topography
Number of days with heavy rainfall
Flood Water Depth
Proximity to River
Frequency of Occurrence
Dikes/Levees

AHP 
Weight

0.311
0.235
0.233
0.220
0.431
0.327
0.242
0.269
0.267
0.248
0.217
0.523
0.268
0.209
0.615
0.385
1.000
1.000
0.509
0.491
1.000
0.296
0.254
0.227
0.223
1.000

Rank

1
2
3
4
1
2
3
1
2
3
4
1
2
3
1
2
1
1
1
2
1
1
2
3
4
1
1

Consistency 
Ratio

0.057

0.048

0.056

0.033

0.000

0.000
0.000
0.000
0.000
0.000
0.045

0.000

 As presented in Table 9, the indicator with 
the highest weight in the social component is Past 
Experience (0.431), highlighting the community’s 
historical encounters with flood events as the most 
influential factor for social susceptibility. This is 
followed by Disabled People (0.327), indicating the 

heightened risk of vulnerable populations, while 
Population in Flood Prone Area (0.311) ranked 
highest among exposure-related indicators. Shelters/
Hospitals (0.269) led among resilience indicators, 
slightly ahead of Warning System and Emergency 
Service.
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 In the economic component, Land Use 
(0.523) dominated the exposure subdimension, 
while Quality of Infrastructure (0.615) emerged as 
the most critical under susceptibility, emphasizing 
structural conditions in economic vulnerability. 
Amount of Investment was given full weight (1.000) 
in resilience, showing the experts’ unanimous 
agreement on its critical importance in economic 
recovery and risk mitigation.

 For the environmental dimension, Degraded 
Area (1.000) and Rainfall (0.509) were identified 
as the most important indicators for exposure 
and susceptibility, respectively. Green Area also 
received full weight (1.000), signifying its essential 
role in flood absorption and ecosystem buffering 
capacity.

 Lastly, in the physical domain, Topography 
(0.296) and Number of Days with Rainfall (0.254) 
were prioritized under exposure. Both Frequency 
of Occurrence and Dikes/Levees received the 
highest weight (1.000) in their respective 
subdimensions, reinforcing their fundamental 
roles in flood prediction and physical protection.

Policy Implications and Localized 
Strategies for Flood Resilience

 The strategic application of flood vulnerability 
assessment results lies in their institutional 
integration into the policy and planning mechanisms 
of LGUs, thereby transforming empirical outputs 
into actionable governance tools. In the case of 
Nabunturan, the weighted indicators identified 
through the FDM and AHP serve not merely 
as diagnostic variables but as entry points for 
operationalizing anticipatory, risk-informed 
development.

 The weighted indicators identified 
through the FDM and AHP processes provide a 
robust empirical basis for enhancing disaster risk 
management planning in Nabunturan. Specifically, 
they offer actionable insights for refining the 
CDRA, Barangay Disaster Risk Reduction and 
Management Plans (BDRRMPs), and the development 
of a localized Flood Vulnerability Index (FVI) (Balica 
et al., 2012; Rufat et al., 2015; Khajehei et al., 2020).

 The CDRA, as the municipality’s foun-
dational risk assessment tool, can integrate the 
weighted indicators to improve the granularity 

and relevance of hazard exposure, sensitivity, and 
adaptive capacity metrics (Nakasu and Amrapala, 
2023). Embedding these empirically derived 
indicators into the CDRA will strengthen its ability 
to inform spatial risk layers, prioritize hazard-
prone areas, and support anticipatory planning 
(UN-Habitat, 2019; World Bank, 2021).

 At the barangay level, the BDRRMPs may 
adopt the validated indicators to enhance risk 
profiling and guide the prioritization of 
preparedness and mitigation measures. For instance, 
indicators related to social vulnerability (e.g., 
population in flood-prone areas, disabled 
populations) and infrastructure resilience (e.g., 
quality of infrastructure, access to emergency 
services) can inform contingency planning, evacuation 
strategies, and community-based early warning
systems (Gaillard and Mercer, 2013). Integrating these 
indicators will ensure that the BDRRMPs are 
grounded in both scientific evidence and the 
social realities of the most vulnerable groups.

 Moreover, the study’s weighted indicators 
provide the foundation for constructing a Flood 
Vulnerability Index (FVI) tailored to Nabunturan’s 
context. The FVI will allow for the aggregation 
of normalized indicator scores into composite 
vulnerability ratings at the barangay level (Balica 
et al., 2012; Rufat et al., 2015; Khajehei et al., 2020). 
This index can serve as a decision-support tool for 
local officials to allocate resources strategically, 
prioritize risk reduction investments, and monitor 
changes in flood vulnerability over time.

 By aligning the CDRA, BDRRMPs, and the 
FVI within a shared, indicator-based framework, 
Nabunturan can transition from reactive disaster 
response to anticipatory, resilience-focused planning. 
This integration will promote coherence across 
local governance instruments and support more 
targeted, data-driven disaster risk reduction 
efforts (Cutter and Finch, 2008; Abdullah and 
Yusof, 2018; Saaty, 2008).

 The convergence of CDRA, BDRRMPs, and 
the FVI through a shared, indicator-based frame-
work ensures that risk reduction is not siloed 
but mainstreamed across governance levels. This 
alignment strengthens institutional coherence, 
improves risk visibility in planning instruments, 
and reinforces the LGU’s pursuit of sustainable, 
climate-resilient development.



43
Davao Res J 2025 Vol. 16  |  30-48DOI: https://doi.org/10.59120/drj.v16i2.373

Cajano and Olpenda Development and Prioritization of Flood Vulnerability

43

DISCUSSION

 This study successfully identified and 
validated 27 flood vulnerability indicators for 
Nabunturan, Davao de Oro, encompassing social, 
economic, environmental, and physical dimensions. 
Through the FDM and the AHP, it developed an 
empirically grounded framework for assessing 
and prioritizing flood risks in a localized, data-
driven manner.

Social Dimension

 The social dimension revealed that Past 
Experience (0.431), Disabled People (0.327), and 
Population in Flood-Prone Areas (0.311) were the 
most significant indicators. The prioritization 
of Past Experience reflects how historical flood 
exposure shapes both community awareness and 
adaptive capacity. Communities with frequent 
flood experiences often develop coping 
mechanisms and risk perceptions that can either 
strengthen resilience or, in some cases, lead to 
risk normalization, where repeated exposure 
leads to underestimation of danger. This aligns
with Cutter et al. (2003), who emphasized that
disaster experience is a core driver of vulnerability 
and adaptive behaviors.

 The high weight assigned to Disabled 
People highlights the disproportionate vulnerability 
of marginalized populations in disaster contexts. 
Studies like Rufat et al. (2015) stress the 
importance of integrating social equity into 
vulnerability assessments, noting that socially 
sensitive groups often face systemic barriers in 
preparedness, response, and recovery. In the 
Philippines, Orencio and Fujii (2013) have noted 
that LGUs frequently struggle to address the 
compounded vulnerabilities of such groups, partly 
due to resource constraints and reactive 
governance.

 Meanwhile, Population in Flood-Prone 
Areas emphasizes the risks associated with 
demographic exposure. High-density settlements 
in flood-prone zones amplify potential casualties 
and damages, which is consistent with findings 
by Cutter et al. (2003) and reflects broader 
patterns of urban expansion into hazard-prone 
areas driven by socio-economic pressures.

Economic Dimension

 In the economic dimension, the highest 
weights were observed for Amount of Investment
 (1.000), Quality of Infrastructure (0.615), and 
Land Use (0.523). The dominance of Amount of 
Investment highlights the vulnerability of 
economic assets, particularly in developing 
regions where key investments such as 
marketplaces, transportation hubs, and 
agricultural infrastructures are often located in 
hazard-prone areas. Khajehei et al. (2020) and 
World Bank (2021) underline that while such 
investments drive local economic growth, they 
can also become significant liabilities when 
exposed to flooding.

 The importance of Quality of Infrastructure 
reflects how resilient physical systems can 
mitigate or exacerbate flood impacts. Poorly 
constructed roads, bridges, and drainage systems 
can lead to cascading failures during flood events, 
turning moderate hazards into disasters. This 
supports Rufat et al. (2015), who found that 
infrastructure quality is not only a determinant 
of direct flood damage but also of the speed and 
effectiveness of post-disaster recovery.

 Land Use further underscores the critical 
role of spatial planning. Improper zoning and 
land use conversions often lead to settlements in 
high-risk zones, exacerbating exposure and 
complicating evacuation and response efforts. 
This confirms findings from Khajehei et al. (2020), 
who argued for the integration of flood risk 
assessments into urban and regional land use 
planning.

Environmental Dimension

 For the environmental dimension, 
Degraded Area (1.000), Green Area (1.000), and 
Rainfall (0.509) received the highest priority 
weights. The top ranking of Degraded Area reflects 
how land degradation—caused by deforestation, 
mining, and unsustainable land management—
reduces natural flood absorption capacities. This 
increases runoff, exacerbates flood peaks, and 
contributes to soil erosion. The importance of this 
indicator echoes Balica et al. (2012) and Khajehei 
et al. (2020), who demonstrated that environmental 
degradation directly correlates with heightened 
flood risks.



Cajano and OlpendaDevelopment and Prioritization of Flood Vulnerability

44
Davao Res J 2025  Vol. 16  |  30-48 DOI: https://doi.org/10.59120/drj.v16i2.373

 Conversely, the equal prioritization of 
Green Area highlights the role of Nature-based 
Solutions (NbS). Vegetation not only acts as a 
physical barrier to slow floodwaters but also 
improves soil infiltration and stabilizes slopes. 
UN-Habitat (2019) and UNDRR (2022) advocate 
for preserving and restoring green spaces as a 
sustainable, cost-effective method for reducing 
flood vulnerability while co-delivering ecological 
and social benefits.

 Rainfall was recognized as a key hazard 
driver. While it is an uncontrollable variable, 
its predictive capacity for flood risk is crucial, 
particularly in climate change scenarios where 
extreme precipitation events are becoming more 
frequent and intense.

Physical Dimension

 The physical dimension identified 
Frequency of Occurrence (1.000), Dikes/Levees 
(1.000), and Topography (0.296) as the most 
significant indicators. The high weighting of 
Frequency of Occurrence confirms that past flood 
patterns are essential for anticipating future risks. 
This is consistent with Cutter et al. (2003), who 
emphasized that hazard frequency must be central 
in vulnerability and capacity assessments.

 The equal priority of Dikes/Levees 
underscores the role of structural measures in 
managing flood hazards. While not foolproof, 
properly designed and maintained flood control 
infrastructures can significantly reduce exposure 
and damage. However, Khajehei et al. (2020) 
caution that overreliance on structural solutions 
without integrating non-structural measures (like 
zoning and early warning systems) can create a 
false sense of security.

 Topography, though weighted lower than 
other physical indicators, remains vital. Elevation 
and slope influence flood propagation and 
inundation depth, affecting both hazard severity 
and evacuation logistics.

Methodological Strengths and Policy Relevance

 The combination of FDM and AHP 
not only provided quantitative rigor but also 
incorporated expert judgment, making the results 
both technically valid and locally relevant. The 

selection of FDM experts from Nabunturan and 
Davao de Oro LGUs ensured contextual sensitivity, 
while the inclusion of regional experts for AHP 
introduced technical diversity and minimized 
bias—a practice recommended by Saaty (2008) and 
Habibi et al. (2015).

 Moreover, the participatory, multi-criteria 
approach aligns with Sendai Framework priorities 
and global best practices in disaster risk reduction 
(UNDRR, 2022), which advocate for stakeholder 
engagement and the use of empirical data to 
inform policy and planning.

CONCLUSION

 The study results demonstrated the varying 
influence of the indicators, highlighting the 
critical role of socio-economic exposure, 
infrastructural capacity, and environmental 
degradation in shaping flood vulnerability. The 
prioritization process revealed strong correlations 
between demographic pressures, past disaster 
experiences, and heightened flood risks. Areas 
with limited infrastructure and degraded 
environmental conditions were consistently 
identified as more vulnerable.

 Integrating FDM and AHP ensured a 
robust, evidence-based framework for indicator 
selection and weighting, culminating in a localized 
Flood Vulnerability Index (FVI). This FVI provides 
a practical tool for differentiating flood risks across 
barangays and components, supporting targeted 
disaster risk reduction and climate adaptation 
strategies.

 The study’s findings affirm the theoretical 
frameworks proposed by UNESCO-IHE and the 
IPCC, which conceptualize vulnerability as a 
function of exposure, susceptibility, and resilience. 
By operationalizing these dimensions through 
validated local indicators, the research advances 
proactive vulnerability assessment practices and 
offers valuable insights for integrating empirical 
risk data into municipal planning and resilience-
building initiatives.

RECOMMENDATION

 Based on the findings, the following practical 
and actionable recommendations are proposed:
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1. Institutionalize the validated flood vulnerability    
    indicators within Nabunturan’s Climate and 
    Disaster Risk Assessment (CDRA) and Barangay 
    DRRM Plans (BDRRMPs) to support intervention 
    prioritization and resource allocation.
2. Refine and adopt the developed FVI for 
    continuous monitoring and evaluation of flood 
    vulnerability, guiding investment decisions and 
    progress tracking.
3. Design programs focusing on infrastructure 
    improvement, environmental restoration, and 
    enhancing community adaptive capacities. Use 
    results to update the CLUP and LCCAP, and other 
    related plans.
4. Strengthen the technical capacity of the 
    MDRRMO and barangay DRRM committees for 
    indicator application. Institutionalize regular 
    data collection and indicator updates.
5. Encourage the application of the study’s FDM 
    and AHP methodology in other municipalities 
    within Davao de Oro and the region to  
    standardize localized flood vulnerability 
    assessments.
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