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ABSTRACT

 About 45%-60% of the world’s population resides in shoreline areas. Shoreline regions 
are one of the most vulnerable areas to the effects of global warming. Positions of shorelines 
are challenging to predict, but the trend of accretion and erosion can be determined using 
statistical and geospatial techniques. Mati City is a major tourist destination for white sand 
beaches and pristine waters. Shorelines along Mayo Bay are a source of income for the 
local community. However, Mayo Bay has been subjected to shifts due to erosion.  This 
study aims to determine the trend of the shoreline shift in Mayo Bay from 2013 to 2023. 
Landsat 8 OLI satellite images are used in this study. Results reveal that most shorelines 
experienced erosion, with 97.26% erosion transects. The shoreline length has slightly 
increased by 0.08% from 2013 to 2023 and is predicted to increase by 3.57% in 2063 and 
11.51% by 2100. Barangay Lucatan shows the highest shoreline expansion, while Barangays 
Bobon and Dahican exhibit the most erosion, with mean rates of -27.15 m/year and -23.60 
m/year, respectively. With a classification accuracy of 89% and Root Mean Square Error (RMSE) 
of 0.05, the study provides a reliable basis for Mayo Bay’s shoreline management. The findings
will inform erosion mitigation efforts and guide sustainable coastal management plans 
for at-risk areas.
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INTRODUCTION

 A shoreline or coastline is a dynamic 
line connecting water and land (Pajak 
and Leatherman, 2002; Nandi et al., 2016). 
Identifying shoreline alterations and their 
corresponding variability is vital for 
different coastal studies undertaken by 
engineers, coastal managers, and coastal 
scientists (Kankara et al., 2015). The 
delineation process for shoreline on how 
much is eroded or accredited through 
time is difficult due to its dynamic nature 
(Fenster et al., 2001; Nandi et al., 2016). 
According to Church and White (2011) and 
Qiao et al. (2018), the global mean sea level 
increased from the late 19th century 
to the beginning of the 21st century by 
approximately 210 mm and is predicted 
to grow by the end of the 21st century by 
450 mm to 820 mm. Shoreline undergoes 
long-term and short-term frequent shifts 
due to geomorphological changes, 
hydrodynamic changes, and other 
contributing (Nandi et al., 2016). Mondal 
(2017) pointed out that the frequent change 
in shoreline position is duly attributed to 
anthropogenic activities, tides, waves, and 
wind. Furthermore, he emphasized erosion 
as a form of a backward movement of 
land while accretion is a form of a forward 
movement caused by these identified 
natural factors. An updated and accurate 
information on shoreline change 
magnitudes will be of huge aid to 
researchers studying large coastal areas 
such as safe navigation, aspects of erosion 
and accretion, designing of defenses for 
coasts, hazard zoning, environmental 
protection, sustainable coastal resources 
management, and predicting future positions 
of shoreline (Szmytkiewicz et al., 2000; 
Dellepiane et al., 2004; Maïti and 
Bhattacharya, 2009; Davidson et al., 2010; 
Louati et al., 2015). Vulnerable low-lying 
islands and coastal regions having a huge 
number of population and substantial 
infrastructure are susceptible to rising 
sea levels (Arkema et al., 2013; Johnston 
et al., 2014; Qiao et al., 2018) and will cause 
negative impacts on socioeconomic and 
coastal ecological development (Rahman et 
al., 2011; Qiao et al., 2018). Boye et al. (2015) 

state that about 45% to 60% of the global 
population resides on coasts. Therefore, 
monitoring regions within the coastal areas 
is essential for environmental and national 
development (Rasuly et al., 2010; Qiao et al., 
2018).

 The Mayo Bay in the City of Mati, 
Davao Oriental, is geographically located 
in the southern part of the Philippine Island 
of Mindanao. The embayment is described 
as rich in biodiversity, making it one of 
the most beautiful bays in the world as 
officiated by the Most Beautiful Bays in the 
World Association, as reported by SunStar 
Davao (2020). The study aims to analyze 
the short-term and predict the long-term 
shoreline trend in Mayo Bay, Davao 
Oriental. Short-term analysis is based on 
the rate of shifts from 2013 (baseline year) 
to 2023, while long-term analysis is after 
50 years (2063) and at the end of the 
century (2100). The study focuses on the 
following research gaps: insufficiency of 
local shoreline shift-related studies, lack of 
modern techniques and technical experts in 
monitoring shorelines and detecting shifts, 
and coastal management-related gaps. It 
is very challenging to search for local 
studies. Currently, there are no research 
studies on the monitoring and detecting 
shoreline shifts along the Davao Region. 
Most research studies focused on marine 
ecosystems and none on the short-term 
and long-term shift detection along these 
shorelines. There is also an insufficiency in 
integrating Geographic Information Systems 
(GIS) and Remote Sensing (RS) in studying 
shorelines, especially in the Davao Region. 
The researcher utilizes internationally 
published research studies focusing on 
shoreline shift detection and applies those 
concepts, principles, and findings in Mayo 
Bay. If published, this will be the first 
research study to focus on shoreline shifts 
in Mayo Bay and will also serve as a 
baseline for further relevant studies. 
Modern techniques and technical experts 
are lacking in monitoring shoreline shifts. 
This research highlights the significance 
of integrating GIS and RS as a cost-
effective and reliable tool for monitoring 
shoreline shifts.  There is a limitation in the 
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availability of historical shoreline data, 
which will aid in analyzing shoreline 
shift trends. Free/Open-source satellite 
images are used in this study. Despite the 
limitations, RS techniques such as geometric 
correction, radiometric correction, 
accuracy assessment, and root mean square 
error (RMSE) are applied to produce a 
holistic model. There is a lack of user-
friendly platforms for various stakeholders 
to detect shoreline shifts. Advanced 
techniques in RS are needed to obtain high 
accuracy in determining shoreline shifts, 
especially in changing environmental 
conditions. The researcher chose Mayo Bay 
as the study area since the agencies 
managing the shoreline areas of Mayo 
Bay are crafting an integrated coastal 
management (ICM) policy to comprehensively 
strengthen the implementation, protection, 
and management of shorelines. GIS and RS 
provide satellite image analysis, allowing 
comprehensive assessments of the 
shorelines over time. By identifying the 
eroding and accreting areas, the concerned 

agencies can prioritize vulnerable areas 
through various governmental interventions. 
Overall, it will support coastal policymakers 
in understanding the shoreline shift trend 
along Mayo Bay and help them implement 
the appropriate management strategies.

MATERIALS AND METHODS

Study area

 Mayo Bay is geographically located 
on the southern part of the Philippine 
Island of Mindanao at 6.79O – 7O N latitude 
and 126.31O– 126.41O E longitude (Figure 
1). It is adjacent to Pujada Bay and is 
located between the two (2) headlands, 
Tarragona in the east and Guang-Guang 
Peninsula in the west. It is rich in 
biodiversity. It is a nest of marine turtles 
(e.g., Chelonia mydas, Eretmochelys 
imbricata, Lepidochelys olivacea, and 
Dermochelys coriacea) (Jimenez and 
Inabiogan, 2019b) and dugong (Jimenez and 

Figure 1. Map of the study area showing the coastal barangays surrounding Mayo Bay 
(Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community).
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Inabiogan, 2019a). The Bay serves as the 
catchment of runoffs from the terrestrial 
side, rivers, watersheds, and smaller 
tributaries in Barangays Lucatan, Bobon, 
Mayo, Tagabakid, and Dahican (National 
Mapping and Resource Information 
[NAMRIA], 2015) drain into the Bay which 
provides freshwater input and nutrients. 
The Bay is a mixture of Pacific waters 
exchanged through the surrounding 
catchment areas and tidal fluctuations 
that carry their respective physiochemical 
signatures. Global oceanic processes occur 
on this side of the Pacific Ocean and have 
significant roles in global climatologies, 
such as the Mindanao current. Mindanao 
current is generated by the North 
Equatorial Current bifurcation adjacent to 
the Philippine coast. Mindanao flows south 
of the Philippine Sea along the Mindanao 
Coast, enabling fresh water and heat 
exchange to the Indian and the North 
Pacific Ocean (Schonau et al., 2015). Schonau 
(2015) further elucidated that the transport 
process of the Mindanao Current influences 
the available nutrients, marine ecosystem 
productivity, and various climate phenomena 
such as the El Niño Southern Oscillation. 

Sources of data

 In this study, multi-temporal satellite 
data from Landsat 8 OLI from year 2013 
and 2023 are employed. However, the 
insufficient satellite imagery with less 
clouds during the selected period prevents 
the satellite images from being taken at 
regular intervals. Acquired satellite images 
have a cloud cover of 15% or less. Landsat 
8 OLI satellite image data are accessed from 
https://earthexplorer.usgs.gov/. Landsat 8 
carries the operational land imager (OLI) 
and the thermal infrared sensor (TIRS) 
instruments. OLI measures the visible, near-
infrared, and short-wave infrared portions 
of the spectrum. Landsat 8 satellite images 
have a 30-meter multi-spectral spatial 
resolution and 15-meter panchromatic along 
a 185-kilometer swath. Landsat 8 orbits the 
Earth in a sun-synchronous, near-polar orbit 
at 705 km altitude. It completes one Earth 
orbit every 99 minutes and has a 16-day 
repeat cycle with an equatorial crossing at 

10:00 a.m. It acquires about 750 scenes daily 
on the World Reference System-2 (WRS-2) 
path/row system with a swath overlap 
varying from 7 percent at the equator to a 
maximum of 85 percent approximately at 
extreme latitudes. Landsat 8 OLI contains 
nine (9) spectral bands: band 1 coastal aerosol 
(0.43 - 0.45 µm), band two blue (0.450 - 0.51 
µm), band three green (0.53 - 0.59 µm) 30 
m, band four red (0.64 - 0.67 µm), band five 
near-infrared (0.85 - 0.88 µm), band six 
short wave infrared (SWIR) (1.57 - 1.65 µm), 
band 7 SWIR 2 (2.11 - 2.29 µm), band eight 
panchromatic (0.50 - 0.68 µm), and band 
nine cirrus (1.36 - 1.38 µm) (USGS, 2024).  

Data analysis

 The Digital Shoreline Analysis 
System (DSAS) software is utilized to analyze 
and identify the erosion-accretion portions 
along the shorelines of Mayo Bay. It 
measures the change in shoreline by 
comparing the position of both shorelines. 
A transect line will determine the extent 
of shifting, which also serves as a tool 
for prediction. Utilizing DSAS software, 
which seamlessly integrates with GIS, 
variations along the shoreline are 
discovered following shoreline extraction. 
It calculates the rate of shift statistics 
for a time series of vector data related 
to shorelines. Transects that are cast 
perpendicular to the baseline are generated 
for this purpose by DSAS. In this study, a 
100-meter interval per transect is used. 
The rate of shift statistics is then 
computed using the transect shoreline 
intersections along this baseline. Based 
on the DSAS methodology, the shoreline 
rate of shift is calculated using two 
different statistical techniques: First is the 
identification of the distance between the 
oldest and newest shorelines for each 
transect, and second is the division of the 
distance between the oldest and latest 
shoreline movement by the amount of time 
that has passed between them and the 
EPR is calculated with unit in meter per 
year. Positive values demonstrate accretion 
along the shoreline, while negative values 
obtained using this methodology represent 
erosion.
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 The study is limited to identifying a 
decade of shoreline shift along Mayo Bay 
(2013 to 2023) using Landsat 8 OLI 
satellite imagery with a resolution of 30 
meters. Satellite images from 2013 to 2023 
with 15% or less cloud cover are chosen 
for erosion-accretion change. Accuracy 
assessment and the RMSE are applied to 
the generated maps to address the 
limitations in the resolution of the satellite 

imagery used. DSAS automatically chose 
transects along the shoreline following 
the 100 m interval for the shoreline 
erosion-accretion coverage. 

The procedure of the study

 Figure 2 presents the study’s 
methodological framework, showcasing the 
data collection processes.

Figure 2. The methodological framework of the study.
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Image Pre-Processing

 The Landsat 8 OLI satellite images 
for 2013 and 2023 undergo necessary 
preparations. This will ensure the accuracy 
of the satellite images utilized in the study. 
Downloaded Landsat 8 OLI satellite images 
are added to GIS software as raster files. 
Shapefiles for the boundary of Mati City 
and Tarragona municipality are imported 
as they serve as the spatial data boundary. 

Georeferencing
            
 Satellite images first undergo 
georeferencing. The United States Geological 
Survey (USGS) defines georeferencing as 
an internal coordinate system relating a 
ground system of geographic coordinates 
to an aerial photo or a digital map where 
every point on the map has a corresponding 
location on the surface of the Earth 
(USGS, 2024). The satellite images undergo 
aligning of satellite images points to their 
corresponding geographic coordinates on 
the ground. Conducting georeferencing 
is crucial as it allows accurate analysis of 
spatial data.

Image correction

 Georeferenced satellite images 
undergo image correction. The most 
commonly used image correction is the 
geometric and radiometric correction. 

Geometric correction

 Geometric correction is conducted 
to eliminate the geometric anomalies and 
develop a representation of the original 
scene by means of pixel location errors 

correction and the establishment of the 
incorrect position and ground attributes 
coincidence in the image (Olmanson et al., 
2001).

Radiometric correction

 Radiometric correction uses dark 
object subtraction which reduces the 
influence of the atmosphere in the satellite 
images as these reduces the quality of 
the satellite images. The lowest value of 
the pixel in an image is assumed to 
be equal to zero (Natih et al., 2020). 

Image processing

Normalized Difference Water Index 
(NDWI) generation

 Enhanced satellite images are 
subjected to NDWI generation. NDWI helps 
identify the open water features and 
highlights them against vegetation and soil 
on a satellite image (Sryberko, 2023). Figure 
3 shows the 2013 and 2023 NDWI maps. 
According to Elnabwy et al. (2020), NDWI 
provides an excellent demarcation of the 
coastline along with the red, green, and 
blue (RGB) system. NDWI is obtained by 
utilizing near-infrared and green band 
combinations of satellite image data, 
allowing it to detect changes in water 
bodies. Green represents band 3, while the 
near-infrared represents band 5. McFeeters, 
in 1996, proposed that it detect and monitor 
slight alterations in the water content of 
water bodies. NDWI is capable of 
highlighting water bodies in a satellite 
image using enhancement. To calculate 
NDWI for Landsat 8 OLI, use the equation 
written as: 

NDWI=
(Green - Near-infrared(NIR)
(Green + Near-infrared(NIR)

 The visible green wavelengths 
optimize the reflectance of the surface of 
water. The near-infrared wavelength 
optimizes the high reflectance of the 
terrestrial vegetation and soil features 

while the low reflectance of water features 
is minimized. The result for the NDWI 
equation is a negative value or zero for 
land features and positive values for 
water features.
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Figure 3. 2013 and 2023 NDWI Map.

Image classification

 After generating NDWI, the satellite 
images undergo image classification. 
Image classification of shorelines is 
necessary as it improves the accuracy 
of the extracted shoreline change 
(Lu and Weng, 2007). This helps in 

grouping pixels of the same class. In this 
case, the study area is divided into 
two (2) classes only as the study will 
focus on identifying the shoreline of the 
line separating the land and water areas 
along Mayo Bay. The blue color is used 
to represent the water body, and brown 
is used to describe the land area.
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Accuracy assessment

 A classified image is assessed to test 
its accuracy. Elnabwy et al. (2020) stress that 
accuracy assessment or validation is essential 
in RS data processing. Accuracy assessment 
parameters are beneficial for model 
performance assessment of a specific class 
or category of a particular study interest. 

Image classification accuracy is commonly 
measured using a confusion/error matrix. 
Rwanga and Ndambuki (2017) define a 
confusion matrix as a simple cross-
tabulation sample set of reference data in 
the ground and the mapped class label. In 
this study, the overall accuracy and Kappa 
statistics are used to assess the accuracy of 
the classified satellite images. 

The overall accuracy can be acquired using this formula:

Overall Accuracy =
  n (total number of corrected pixel)

N (total numbe of pixel of raw image)

 Kappa analysis is a discrete 
multivariate technique utilized for image 
classification accuracy assessment and 
measurement of agreement between the 
reference data and classified map (Elnabwy 

et al., 2020). Kappa statistics range from 0 to 
1, representing the highest agreements by 
values closest to 1. Kappa statistics is 
calculated using this formula (Jenness and 
Wynne, 2007):

Kappa Coefficient =
N ∑    Xii - ∑   (Xi+  X+i)
     N2-∑   (Xi+  X+i)

r
i=1

r
i=1

r
i=1 *

*

 Where: N is the total number of 
observations (pixels), r is the number of 
columns and rows in the error matrix, X+i 
is the marginal total of column i, Xi+ is 
the marginal total of row i, and Xii is the 
observation in column i and row i. 

 Table 1 shows the kappa statistics 
rating criteria reproduced by Rwanga and 
Ndambuki (2017) based on the categorization 
by Landis and Koch (1977), which is widely 

referenced. Kappa statistics less than 0 
represent poor agreement. Kappa statistics 
equal to 0 to 0.20 represents slight 
agreement. Kappa statistics equal to 0.21 
to 0.40 represents fair agreement. Kappa 
statistics equal to 0.41 to 0.60 indicates 
moderate agreement. Kappa statistics equal 
to 0.61 to 0.80 indicates substantial 
agreement. Kappa statistics equal to 0.81 
to 1.00 shows almost perfect agreement. 

Table 1. Kappa statistics rating criteria by Rwanga and Ndambuki (2017).

  Kappa statistics Strength of agreement

  <0.00   Poor
  0.00-0.20  Slight
  0.21-0.40  Fair
  0.41-0.60  Moderate
  0.61-0.80  Substantial
  0.81-1.00  Amost perfect
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Shoreline shift data analysis 
shoreline digitization
          
 Satellite images with an acceptable 
accuracy value are then subjected to 
shoreline digitization. The digitized satellite 
image is subjected to image reclassification. 
The satellite image, which is in raster 
format, is converted to polygon. Shorelines 
are then digitized by tracing the polygon 
within the satellite image, which is saved 
in vector format or shapefiles.

Shoreline extraction
           
 Shoreline extraction is conducted 
after shoreline digitization.  Maiti and 
Bhattacharya (2009) state that a saturated 
zone at the water-land boundary makes 
automatic shoreline delineation complex.

Field validation
            
 The researcher uses the Garmin 
ETREX 221X Global Positioning System 
(GPS) device to conduct field validation 
along the coastal barangays surrounding 
Mayo Bay. The Garmin ETREX 221X GPS 
is a handheld dual-satellite measurement 
positioning navigator. It is a suitable 
device to be utilized for ground truthing 
as it enhances the possibility of receiving 
two (2) satellite systems at the same time. 
The Root Mean Square Error (RMSE) is 
used to validate the generated model
in this study. RMSE is determined to 
validate, compare, and estimate the model 
output error from the predicted and 
actual location of the shoreline. 
(Nandi et al., 2016). RMSE can be calculated 
using this equation:

RMSE= √(XMod-XOrg)2 - (YMod-YOrg)2

 Where XMod and YMod represents 
the generated coordinates of the model 
X and Y of the shoreline while XOrg and 
YOrg represents the actual coordinates of X
and Y of the shoreline. The resulting 

RMSE value will be evaluated according 
to its performance to test the model’s 
accuracy. Table 2 shows the RMSE ranges 
and the corresponding performance.

Table 2: RMSE ranges for model performance (Oke et al., 2020).

  Root Mean Square Error (RSME) range Performance

  < 0.009      Excellent prediction accuracy
  0.009 < RMSE < 0.09    Good prediction accuracy
  0.09 < RMSE < 0.5    Reasonable prediction
  >0.5      Inaccurate prediction

Cast transect from baseline

 Transects from the baseline method 
are considered and utilized by the Federal 
Emergency Management Agency (FEMA) 
as a standard method for determining 
long-term coastal hazard zones and coastal 
change rates vulnerable to severe erosion 
(Crowell et al., 1991). Casting of Transect 

with the aid of DSAS software. Nandi et 
al. (2016) point out that transects from the 
baseline approach are based mainly on a 
statistical approach. A personal geo-database 
is then created where the shapefiles for 
the 2013 and 2013 shorelines are stored 
following the same coordinate system as the 
satellite image. Feature classes for 2013 and 
2023 shorelines are created. 2023 shoreline 
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is stored as a line feature type in the feature 
class with field names (OBJECTID, SHAPE, 
SHAPE_Length, DATE_, and UNCERTAINTY) 
and its corresponding data type (Object 
ID, Geometry, Double, Text, and Double). 
2013 shoreline is stored as a line feature 
type in the feature class with field names 
(OBJECTID, SHAPE, SHAPE_Length, ID, and 
GROUP_) and its corresponding data type 
(Object ID, Geometry, Double, Long Integer, 
and Long Integer). Create a buffer that 
serves as the basis for establishing the 
baseline. Transects are cast. Erosion and 
accretion rates of points identified by the 
transects or the straight line intersecting the 
shoreline are then determined.

Erosion-Accretion rates calculation

 Shoreline shift rates are calculated 
using a confidence level of 95%. The erosion 
and accretion rates are generated using the 
End Point Area (EPR) method. The shoreline 
shift data generated by DSAS software 
presents the erosion and accretion rates 
of the different portions of the shoreline 
as identified by the casted transects.

Shoreline shift prediction

 The EPR prediction model is used in 
this study as it is the most commonly used 
shoreline shift prediction model by coastal 
managers in forecasting future erosion 
and accretion rates of a particular location 
due to its simplicity. Data are presented in 
meter/s per year unit. Positive values mean 
accretion, while negative values mean 
erosion. EPR is the most commonly used 
method for determining the rate of change 
and prediction of the future position of the 
shoreline. It is widely used, especially by 
coastal land managers and planners, and 
has become popular due to its robustness 
and simplicity (Li et al., 2001; Nandi et al., 
2016).  Moreover, Nandi et al. (2016) also 
point out that the EPR method is computed 
using the latest position and a baseline. Any 
information relevant to the shoreline, such 
as tidal information, sea current data, 
sediment supply, sea wave, etc., is not 
required for analysis because it is only 

anchored on the historical and recent 
shoreline map. The total rate of change 
on shoreline distance is divided by the 
difference in the elapsed time. It only solves 
shoreline shift rates with two (2) different 
dates and is calculated for different 
combinations for more than two shorelines 
(Ciritci and Türk, 2019). ERR method is a 
major advantage for shoreline shift 
prediction since any shoreline-related 
information, such as sea current data, 
tidal information, sediment supply, sea wave 
data, etc., are not required for the analysis 
since it is based on the historical and most 
recent shoreline map (Nandi et al., 2016). 

RESULTS

Accuracy assessment

 Table 3 shows the error matrix of 
the satellite image for 2013 for accuracy 
assessment. There are 5 classes used for 
assessing the accuracy of the satellite image: 
water body, built-up, land, agricultural 
land, and forest. There is a total of 100 
accuracy assessment points. Out of the 34 
total water body accuracy assessment points 
in the reference data and 35 total water 
body accuracy assessment points in the 
classified data, 32 accuracy assessment 
points are classified as water bodies. Of 
the 18 total built-up accuracy assessment 
points in the reference data and 17 total 
built-up accuracy assessment points in the 
classified data, 15 are classified as built-up. 
Out of the 24 total land accuracy assessment 
points in the reference data and 28 total 
land accuracy assessment points in the 
classified data, 24 accuracy assessment 
points are classified as land. Out of the 17 
total agricultural land accuracy assessment 
points in the reference data and 15 total 
agricultural land accuracy assessment 
points in the classified data, 13 accuracy 
assessment points are classified as 
agricultural land. Out of the 7 total forest 
accuracy assessment points in the reference
data and 5 total forest accuracy assessment 
points in the classified data, 5 accuracy 
assessment points are classified as forest.
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Table 3. Error matrix for 2013 satellite image.

Classified 
data

Reference data

Class value

Waterbody
Built-up
Land
Agricultural 
land
Forest

Total

Waterbody

32
2
0
0

0

34

Built-up

1
15
0
2

0

18

Land

0
0
24
0

0

24

Agricultural 
land

2
0
2
13

0

17

Forest

0
0
2
0

5

7

Total

35
17
28
15

5

100

 Table 4 shows the error matrix of 
the satellite image for 2023 for accuracy 
assessment. There are 5 classes used for 
assessing the accuracy of the satellite image: 
water body, built-up, land, agricultural land, 
and forest. There are a total of 100 accuracy 
assessment points. Out of the 28 total water 
body accuracy assessment points in the 
reference data and 31 total water body 
accuracy assessment points in the classified 
data, 27 accuracy assessment points are 
classified as water bodies. Of the 19 total 
built-up accuracy assessment points in the 
reference data and 20 total built-up accuracy 
assessment points in the classified data, 

17 are classified as built-up. Out of the 26 
total land accuracy assessment points in the 
reference data and 25 total land accuracy 
assessment points in the classified data, 24 
accuracy assessment points are classified 
as land. Out of the 13 total agricultural land 
accuracy assessment points in the reference 
data and 11 total agricultural land accuracy 
assessment points in the classified data, 10 
accuracy assessment points are classified as 
agricultural land. Out of the 14 total forest 
accuracy assessment points in the reference 
data and 13 total forest accuracy assessment 
points in the classified data, 12 accuracy 
assessment points are classified as forest.

Table 4. Error matrix for 2023 satellite image.

Classified 
data

Reference data

Class value

Waterbody
Built-up
Land
Agricultural 
land
Forest

Total

Waterbody

27
0
0
1

0

28

Built-up

1
17
1
0

0

19

Land

1
1
24
0

0

26

Agricultural 
land

1
1
0
10

1

13

Forest

1
1
0
0

12

14

Total

31
20
25
11

13

100

Field validation

 Table 5 shows the predicted and 
actual geographic coordinates in latitudes 
and longitudes of the ground control 
points (GCP) in this study as part of 
ground truthing. 11 GCPs were used and 

spread all over the study area. The 
researcher used a GPS device to gather 
the actual geographic coordinates of each 
GCP. These points are used to determine 
the RMSE value of the generated maps. 
Figure 6 shows the location of the GCPs 
used in field validation.
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Table 5. Predicted and actual coordinates of Ground Control Points (GCP).

Ground 
Contro Points 
(GCP)

1

2
3
4
5
6
7
8
9
10
11

Barangay

Don Enrique 
Lopez
Dahican
Dahican
Dahican
Dahican
Dahican
Mayo
Tagabakid
Bobon
Tamisan
Lawigan

Predicted 
latitude

6.959953

6.929966
6.928975
6.932533
6.943612
6.952221
6.800655
7.101389
6.8572912
6.8391768
6.8907801

Actual 
latitude

6.960130556

6.930297222
6.929308333
6.9325
6.943541667
6.952255556
6.991522
7.004427
6.877162
6.842269
6.837113

Predicted 
longitude

126.308995

126.259887
126.272992
126.25531
126.246689
126.217207
126.452976
126.309002
126.400219
126.2908705
126.237703

Actual 
longitude

126.3089833

126.2599528
126.27295
126.2553444
126.2466611
126.2172306
126.325238
126.335797
126.326344
126.346404
126.346367

Figure 4. Map showing location of the Ground Control Points (GCP) used in field validation.

Shoreline shift

 Table 6 shows the number of erosion 
and accretion transects per barangay in 

Mayo Bay. There are a total of 474 
transects, 461of which are erosion transects, 
while 13 are accretion transects. 
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Table 6. Number of erosion and accretion transects.

Barangay

Lucatan
Tomoaong
Tagabakid
Mayo
Don Enrique Lopez
Dahican
Bobon
Tamisan
Lawigan

Total

Erosion

73
62
13
16
37
92
86
17
65

461

Accretion

0
6
3
1
0
2
0
1
0

13

 Barangay Lucatan has a total of 73 
erosion transects and no accretion transect. 
Barangay Tomoaong has a total of 62 
erosion transects and 6 accretion transects. 
Barangay Tagabakid has a total of 13 
erosion transects and 3 accretion transects. 
Barangay Mayo has a total of 16 erosion 
transects and one accretion transect. 
Barangay Don Enrique Lopez has 37 

erosion transects and no accretion transect. 
Barangay Dahican has a total of 92 
erosion transects and 2 accretion transects. 
Barangay Bobon has a total of 86 erosion 
transects and no accretion transect. 
Barangay Tamisan has a total of 17 erosion 
transects and 1 accretion transect. Barangay 
Lawigan has a total of 65 erosion transects 
and no accretion transect.

Table 7. Mean erosion, accretion, and total shift rate in m/yr.

Barangay  Mean erosion rate (m/yr)  Mean accretion rate (m/yr)

Lucatan  -3.30     0.00
Tomoaong  -3.24     2.61
Tagabakid  -2.16     0.13
Mayo   -2.53     3.15
Don Enrique Lopez -2.96     0.00
Dahican  -9.57     2.14
Bobon   -16.42     0.00
Tamisan  -6.47     0.29
Lawigan  -4.03     0.00

 Table 7 shows the mean erosion and 
accretion rate per barangay in Mayo Bay. 
Barangay Lucatan has a mean erosion rate 
of -3.30 m/yr. Barangay Tomoaong has a
 mean erosion rate and an accretion rate of 
-3.24 m/yr and +2.61 m/yr. Barangay 
Tagabakid has a mean erosion rate of 
-2.16 m/yr and an accretion rate of +0.13 
m/yr. Barangay Mayo has a mean erosion 
rate of -2.53 m/yr and an accretion rate 

of +3.15 m/yr. Barangay Don Enrique 
Lopez has a mean erosion rate of -2.96 
m/yr. Barangay Dahican has a mean 
erosion rate of -9.57 m/yr and an accretion 
rate of +2.14 m/yr. Barangay Bobon has a 
mean erosion rate of -16.42 m/yr. Barangay 
Tamisan has a mean erosion rate of -6.47 
m/yr and an accretion rate of +0.29 m/yr. 
Barangay Lawigan has a mean erosion 
rate of -4.03 m/yr.
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Table 8. Maximum and minimum erosion and accretion rate.

Barangay

Lucatan
Tomoaong
Tagabakid
Mayo
Don Enrique Lopez
Dahican
Bobon
Tamisan
Lawigan

Maximum 

-7.71
-8.93
-3.27
-3.84
-6.04
-23.60
-27.15
-13.54
-15.16

Minimum

-0.29
-0.14
-0.08
-0.53
-0.56
-1.88
-7.83
-0.40
-0.24

Maximum 

0.00
4.49
0.29
3.15
0.00
2.25
0.00
0.29
0.00

Minimum

0.00
1.51
0.11
3.15
0.00
2.02
0.00
0.29
0.00

Erosion rate (m/yr)          Accretion rate (m/yr)

 Table 8 shows the maximum and 
minimum erosion and accretion rate. 
Barangay Lucatan has a maximum and 
minimum erosion rate of -7.71 and -0.29 m/
yr, respectively. Barangay Tomoaong has a 
maximum and minimum erosion rate of 
-8.93 and -0.14 m/yr, respectively, and 
maximum and minimum accretion rates of 
+4.49 and +1.51 m/yr, respectively. Barangay 
Tagabakid has a maximum and minimum 
erosion rate of -3.27 and -0.08 m/yr, 
respectively, and maximum and minimum 
accretion rates of +0.29 and +0.11 m/yr, 
respectively. Barangay Mayo has a maximum 
and minimum erosion rate of -3.84 and -0.53 
m/yr, respectively, and a maximum and 
minimum accretion rate of +3.15 m/yr. 

Barangay Don Enrique Lopez has a
maximum and minimum erosion rate of 
-6.04 and -0.56 m/yr, respectively. Barangay 
Dahican has a maximum and minimum 
erosion rate of -23.60 and -1.88 m/yr, 
respectively, and maximum and minimum 
accretion rates of +2.25 and +2.02 m/yr, 
respectively. Barangay Bobon has a 
maximum and minimum erosion rate of 
-27.15 and -7.83 m/yr, respectively. Barangay 
Tamisan has a maximum and minimum 
erosion rate of -13.54 and -0.40 m/yr, 
respectively, and a maximum and minimum 
accretion rate of +0.29 m/yr. Barangay 
Lawigan has a maximum and minimum 
erosion rate of -15.16 and -0.24 m/yr, 
respectively.

Table 9. Shoreline length in km for 2013, 2023, 2063, and 2100.
Year    2013  2023  2063  2100
Shoreline length (km)  47.294  47.331  49.022  54.662

 Table 9 shows the shoreline length 
in 2013 and 2023 and the predicted length 

in 2063 and 2100 using the generated data 
of shoreline shift rates using DSAS software.

Table 10. Shoreline erosion area in km2 (2013, 2023, 2063, and 2100).
 Area   2023  2063  2100
 Mayo Bay  2.968  11.060  9.800

 Table 10 shows the shoreline 
erosion area in square kilometers in 2023 

and the predicted erosion area in 2063 
and 2100.

Table 11. Shoreline accretion area in km2 (2013, 2023, 2063, and 2100).

Area   2023  2063  2100
Mayo Bay  0.020  0.064  0.060
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 Table 11 shows the shoreline
accretion area in square kilometers in 2023 
and the predicted accretion area in 2063 
and 2100. Figure 5 shows the length of the 
shoreline along Mayo Bay in 2013 and 2023 

and the predicted shoreline length in 2063 
and 2100. Figure 6 shows the extent of 
erosion and accretion in 2023 and the 
predicted erosion and accretion coverage 
in 2063 and 2100.

Figure 5. Shoreline length (2013, 2023, 2063, and 2100).

Figure 6. Shoreline erosion-accretion (2023, 2063, and 2100).
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Table 12. Shoreline length (km) for 2013, 2023, 2063, and 2100 per barangay.

Barangay

Lucatan
Tomoaong
Tagabakid
Mayo
Don Enrique Lopez
Dahican
Bobon
Tamisan
Lawigan

Shoreline length (km)
2013  2023  2063  2100
7.478  7.731  8.759  10.881
7.010  6.732  7.273  8.455
1.994  1.955  2.020  2.171
1.920  1.866  1.920  2.042
4.087  4.110  4.111  4.232
8.887  8.586  9.189  10.216
8.379  8.453  8.543  9.105
1.324  1.375  1.392  1.627
6.215  6.523  5.815  5.933
 

 Table 12 shows shoreline length in 
kilometers per barangay for 2013, 2023, 

2063, and 2100.

Table 13. Shoreline erosion area (km2) for 2013-2023, 2023-2063, and 2063-2100.

Barangay

Lucatan
Tomoaong
Tagabakid
Mayo
Don Enrique Lopez
Dahican
Bobon
Tamisan
Lawigan

Erosion area (sq. km)
2013-2023  2023-2063  2063-2100

0.224   0.798   0.751
0.181   0.664   0.602
0.033   0.114   0.110
0.043   0.196   0.183
0.119   0.404   0.418
0.723   2.488   2.220
1.338   5.130   4.437
0.070   0.279   0.230
0.237   0.987   0.849

 Table 13 shows the shoreline 
erosion area in square kilometers per 

barangay for 2013-2023, 2023-2063, and 
2063-2100.

Table 14. Shoreline accretion area (km2) for 2013-2023, 2023-2063, and 2063-2100.

Barangay

Lucatan
Tomoaong
Tagabakid
Mayo
Don Enrique Lopez
Dahican
Bobon
Tamisan
Lawigan

2013-2023  2023-2063  2063-2100

0.000   0.000   0.000
0.011   0.053   0.050
0.001   0.001   0.001
0.004   0.000   0.000
0.000   0.000   0.000
0.004   0.010   0.009
0.000   0.000   0.000
0.000   0.000   0.000
0.000   0.000   0.000

Accretion area (sq. km)

 Table 14 shows the shoreline 
accretion area in square kilometers per 
barangay for 2013-2023, 2023-2063, and 

2063-2100. Figure 7 shows the erosion-
accretion map per barangay.
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Figure 7. Barangay Erosion-Accretion Map.



 Masancay and  Jimenez Predicting the unseen: A shoreline shift analysis and prediction

38
Davao Res J 2024  Vol. 15  |  19-45 DOI: https://doi.org/10.59120/drj.v15i4.269

DISCUSSIONS

GIS and RS in shoreline shift

 GIS and RS technology have been 
acknowledged as a leading means for 
calculating shoreline changes on the 
temporal scale (Nayak, 2002; Zuzek et al., 
2003; Thieler et al., 2009; Kankara et al., 
2015). GIS is a helpful tool in mitigating 
the impacts of a disaster leading to the 
reduction of a residents’ vulnerability to 
hazards (Masancay et al., 2024). The 
integration of GIS and RS is beneficial 
for the management of the coastal zones 
(Mujabar and Chandrasekar, 2013; Bayram 
et al., 2013; Goksel et al., 2020) and also 
effective in the development of any coastal 
area action plans (Goksel et al., 2020). (Ahmed 
et al., 2018) investigates the dynamic nature 
and management aspects of land in the 
coastal areas of Bangladesh using GIS and 
RS techniques. Nandi et al. (2026) conducted 
a case study about coastal shifting and its 
prediction using GIS and RS techniques 
on Sagar Island, West Bengal. A survey by 
Elnabwy et al. (2020) proves that shoreline 
monitoring can be successfully conducted 
using only GIS and RS without including 
the shoreline irregularities attributed to 
coastal morphological features and climate 
variables in the analysis. Similar to the 
study conducted on shoreline shifts in Mayo 
Bay, which integrates GIS and RS for 
analysis, this research shows successful 
detection of shifts and prediction. 

Related shoreline shift studies

Eastern asian region

 In 2020, Chu et al. monitored the 
long-term shoreline dynamics in Hangzhou 
Bay, China, from 2010 to 2020. The study 
results show a shoreline movement of 5 km 
or equivalent to 900 km2. Qiao et al., in the 
year 2018, conducted a spatiotemporal 
shoreline change analysis study in Shanghai, 
China for 1960-to-2015-year interval. The 
findings of the study suggested a 988 km2 
total area shifting. Ciritci and Türk conduct 
a study on automatic detection of shore-
line change in Go¨ksu Delta, Turkey in year 

2019. They stress out a severe coastal erosion 
with an average rate of -30.64 meter per year 
from year 1984 to 2011 attributes to both 
natural and human activities particularly 
the construction of dams and dredging of 
sand along the area. In 2019, Kale and Acarli 
conduct a shoreline change monitoring 
along the coasts of Atikhisar Reservoir, 
Canakkale, Turkey. The findings of the study 
show an increase in shoreline total length 
from 18.8 km in 1995 to 23.1 km in 2014.

Western asian region

 Yadav et al. conduct shoreline 
analysis in 2021 along Rabindranath Tagore 
beach and Devabagh beach in Karnataka 
coast, India. It results to an average 
shoreline change rate of −7.54 meter per 
year in Devabagh beach and an average 
shoreline change rate of 0.004 meter per 
year in Rabindranath Tagore beach from 
2013 to 2017. In 2017, Thakur et al. study 
shoreline change detection in Bakkhali 
Coastal Region, West Bengal, India for 
1990-to-2016-year interval. The results show 
an increase in human settlement by 77.7% 
and increase in aquaculture area by 69.75%.

African region

 In 2015, Louati et al. assess the 
change in shoreline Medjerda delta coast, 
Tunisia from 1972 to 2013 resulting to a 
severe erosion by -42.6 meter per year. 
Dadson et al. analyzed the change in 
shorelines of Cape Coast-Sekondi Coast, 
Ghana, in 2016, resulting in a long-term 
erosion change of -1.44 meters per year
from 1972 to 2005. An assessment in the 
shoreline of Watamuarea, Kenya by 
Alemayehu et al in 2015 resulting to an 
approximate of about 69% of the beach
front from 1969 to 2010.
 
Shoreline delineation using 
satellite imagery data

 Shoreline change is a dynamic 
process (Mills et al., 2005; Qiao et al., 2018) and 
has become a concern for coastal managers 
as 60% of the world’s population is situat-
ed in coastal areas (Boye, 2015). Qiao et al. 
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(2018) strongly stressed that low-lying 
and vulnerable coastal zones all over the 
world are vulnerable to possible effects of 
alterations in shorelines, which is why a 
long time series of shoreline change data 
will be of remedy in knowing how shorelines 
respond to anthropogenic activities and 
natural events and contribute to future 
protection of coasts and sustainable 
development. Boak and Turner (2005), 
Alemayehu et al. (2015), Srivastava et al. 
(2005), and Boye (2015) pointed out that 
shoreline change can be used as a good 
indicator for possible coastal erosion or 
coastal accretion. Coastal erosion is the 
result of the occurrence of shoreline change 
(Zhang et al., 2004; Boye, 2015). Shoreline 
change can be illustrated in full detail with 
the use of spatial data satellite imagery 
containing high resolution, and with the aid 
of the satellite temporal resolution, changes 
can be detected easily (Li and Ma, 2003; 
Natih et al., 2020). Calculating the rate of 
change in shorelines and comprehending 
the processes causing change in shorelines 
is vital to achieving effective coastal 
management (Alemayehu et al., 2015). 
According to Qiao et al. (2018), shorelines’ 
response to anthropogenic activities and 
natural phenomena will be understood 
clearly by exploring what causes shoreline 
change and spatiotemporal dynamic 
analysis. Causes of shoreline shift are 
classified into two (2): natural-induced and 
human-induced activities (Yadav et al., 
2017). Natural-induced causes include the 
processes of coastal erosion, accretion, sea 
level rise, wave energy, sedimentation, and 
wind patterns. Yadav et al. (2017) further 
emphasized that natural-induced causes 
are the primary causes of shoreline 
shift. Human-induced activities include 
Human influence on natural sediment 
transportation, Beach sediment blockage, 
and Sediment mining along the coast (Boye, 
2015). A combination of satellite-based 
GIS and RS is used to analyze and extract 
shorelines. The results of this study proved 
the statements of Ruiz et al. (2007), Ahmed 
et al. (2018), and Natih et al. (2020) that 
using Landsat satellite images is suitable 
for spatial dynamics monitoring of 
shorelines. Compared to other techniques, 

the advantage of using satellite images is 
their efficiency in considering the large 
spatial subject area and repeat data 
collection. There is a lot of shoreline shift 
detection research that utilizes Landsat 
imagery (Xu, 2018; Bishop-Taylor et al., 2021; 
Elnabwy et al., 2020). All of these studies 
have resulted in a successful analysis of 
shoreline shifts with the use of Landsat 
satellite imagery.

Assessing the accuracy of maps

 The shoreline’s accuracy significantly 
affects the findings of the analyses 
conducted in shoreline shift analyses 
(Ciritci & Turk, 2019). The computed kappa 
statistics of the 2013 and 2023 satellite 
images are 0.85 and 0.87, respectively, 
based on the error matrix shown in Table 2. 
The value was attained using the equation 
for the kappa statistics formula shown 
in Chapter 3. According to Rwanga and 
Ndambuki (2017), the generated map is 
almost perfect since the kappa value is 
between 0.81 and 1. The computed overall 
accuracy of the satellite images is 89.00%. 
This also suggests that the generated map is 
good since it is greater than the kappa value. 
Since both satellite images obtained more 
than 0.85 or 85% kappa statistics, there is 
no need for image reclassification since the 
desired accurate kappa value is attained. 
The computed RMSE is 0.05, which is based 
on Table 4. The RMSE value is obtained 
using the formula shown in Chapter 3. This 
suggests that the model or the generated 
maps have good prediction accuracy 
according to the RMSE ranges in Table 1 
for models’ performance by Oke et al. 
(2020) since the RMSE value is between 
0.009 and 0.09.

Figure 8. Pie chart for erosion-accretion 
transects.
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 Figure 8 shows a pie chart illustrating 
that 97.26% of all the transects are erosion. 
This suggests that most of the shorelines 
along Mayo Bay are experiencing shoreline 
erosion. All portions of the shorelines of 
barangay Lucatan, Don Enrique Lopez, 
Bobon, and Lawigan are eroding. Barangay 
Dahican and Bobon have the highest 
number of erosion transects, with 92 and 86, 
respectively, while barangay Tagabakid has 
the least number of erosion transects, with 
13. Barangay Tomoaong has the highest 
accretion transects with 6.

Short-term shoreline analysis

 Shoreline shift analysis from 2013 
to 2023 serves as the short-term shoreline 
analysis for this study.  Using Table 8 as 
a reference, it can be observed that the 
shoreline length in Mayo Bay increased 
by 0.08% from 2013 to 2023.  This suggests 
that there has been an expansion of the 
shoreline along Mayo Bay over the years. 
The erosion area along the shoreline is 
2.968 km2. The accretion area along the 
shoreline is 0.020 km2. Barangay Lucatan, 
Don Enrique Lopez, Bobon, and Tamisan 
show an increasing shoreline length. 
Barangay Lucatan shows the highest 
increase in shoreline, with an approximate 
3.403 km increase. Barangay Bobon, Tamisan, 
and Don Enrique Lopez show a slight 
increase in shoreline by 0.726 km, 0.303 
km, and 0.145 km, respectively. Barangay 
Dahican, Tomoaong, Tagabakid, and Mayo 
decreased in shoreline length from 2013 to 
2023. Barangay Lawigan shows a significant 
increase in shoreline length. It can be 
observed that all the shorelines per barangay 
increased except for barangay Lawigan. 

Long-term shoreline analysis

 Shoreline shift analysis after 50 years 
and at the end of the century is this study’s 
long-term shoreline analysis. The study uses 
DSAS software to analyze the rate of shifts 
along the shorelines.  DSAS can provide the 
capability for a systematic and detailed 
shoreline change rate calculation (Mutaqin, 
2017; Arjasakusuma et al., 2021). The EPR 
method was used because it is the most 

commonly used method for determining 
the rate of shift and predicting the future 
position of the shoreline. It is widely used, 
especially by coastal land managers and 
planners, and has become popular due to 
its robustness and simplicity (Li et al., 2001; 
Nandi et al., 2016).  Moreover, Nandi et al. 
(2016) also point out that the EPR method 
is computed using the latest position and a 
baseline. Any information relevant to the 
shoreline, such as tidal information, sea 
current data, sediment supply, sea wave, 
etc., is not required for analysis because 
it is only anchored on the historical and 
recent shoreline map. The total rate of 
change on shoreline distance is divided 
by the difference in the elapsed time. It only 
solves shoreline change rates with two (2) 
different dates and is calculated for various 
combinations for more than two shorelines 
(Ciritci & Türk, 2019). The shoreline is 
predicted to increase by 3.57% in 2063 and 
by 11.51% at the end of the century. The 
data clearly shows a consistent increase 
in the length of the shoreline over time by 
15.58% from 2013 (47.294 km) to 2100 (54.662 
km). This suggests that there has been an 
expansion of the shoreline along Mayo Bay 
over the years. The erosion area is predicted 
to increase by 272.64% (11.056 km2) in 2063 
and decrease by 11.39% (9.800 km2) in 2100. 
The accretion area is predicted to increase 
by 220% (0.064 km2) in 2063 and decrease 
by 6.67% (0.060 km2) in year 2100. The data 
shows a decrease from the year 2063 to 
2100. Barangay Dahican, Tomoaong, 
Tagabakid, and Mayo increased in shoreline 
length from 2063 to 2100. Barangay Lawigan 
decreased in 2063 and increased again in 
2100.  Table 12 shows all barangays having 
an increasing trend in erosion area from 
2023 to 2063 and then decreased in 2100. 
Barangay Bobon has the highest increase 
in erosion area from 2023 to 2063 
(3.793 km2), followed by barangay Dahi-
can with a 1.765 km2 increase and barangay 
Lawigan with 0.750 km2. The rest of the 
barangays have a slight increase in erosion 
area. Barangay Tagabakid has the least 
increase in erosion area from 2023 to 2063 
with 0.081 km2. Barangay Bobon has the 
highest decrease in erosion area from 2023 
to 2063 (0.693 km2), followed by barangay 
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Dahican with 0.268 km2 decrease and 
barangay Lawigan with 0.138 km2. The 
rest of the barangays have a slight decrease 
in erosion area. Barangay Tagabakid had 
the least decrease in erosion area from 2023 
to 2063, with 0.004 km2. Table 12 shows 
barangays Lucatan, Don Enrique Lopez, 
Bobon, Tamisan, and Lawigan having no 
accretion areas. Barangay Tomoaong has 
increased accretion area from 2023 to 2063 
by 0.024 km2 and a decrease of 0.003 km2

in 2100. Barangay Mayo decreased in 
accretion area by 0.004 km2 from 2023 to 
2063. Barangay Dahican increased accretion 
area by 0.006 km2 and decreased by 0.001 
km2 in 2100. Barangay Tagabakid has a 
consistent accretion area of 0.001 km2. 
Arjasakusuma (2021) suggests that 
coastal defense mechanisms anchored 
by integrated coastal management be 
imposed in coastal erosion areas to 
reduce the socioeconomic impact.  

CONCLUSIONS

 The study results show that 97.26% 
of all transects are erosion. This means 
that most of the shorelines along Mayo Bay 
are experiencing shoreline erosion. The 
shoreline slightly increased by 0.08% from 
2013 to 2023 and is predicted to increase 
by 3.57% in 2063 and 11.51% by 2100. The 
shoreline will increase by 15.58% by the 
end of the century. Barangay Lucatan 
shows the highest increase in shoreline 
length with approximately 3.403 km 
over a decade, equivalent to a 
340.30 m/yr increase rate from 2013 to 
2023. All barangay shorelines are 
increasing in size except for barangay
Lawigan. 

 There is an increase in the area 
along the shoreline caused by shoreline 
erosion. The erosion area is expected to 
increase by 272.64% in 2062 and decrease 
by 11.39% in 2100. All barangays have an 
increasing trend in erosion areas from 
2023 to 2063 and a decrease in 2100. 
Barangay Bobon and Dahican currently 
have the highest erosion area from 2013 
to 2023 with 1.338 km2 and 0.723 km2, 

respectively, and is expected to increase 
by the end of the century by 4.437 km2 and 
2.220 km2, respectively, while the rest of 
the barangays are experiencing a slight 
increase. Barangay Tagabakid has the least 
shoreline erosion area. Barangay Bobon 
has the highest mean erosion rate of -16.42 
m/yr. Barangay Bobon and Dahican have 
a maximum erosion rate of -27.15 m/yr and 
23.60 m/yr, respectively. Most areas are 
not experiencing accretion, particularly 
barangay Lucatan, Don Enrique Lopez, 
Bobon, Tamisan, and Lawigan. Barangay 
Mayo and Don Enrique Lopez have the 
highest accretion rate of +0.004 km2. The 
maximum accretion rate of +4.49 m/yr 
is in barangay Tomoaong.

 The future position of shorelines 
in 2063 and 2100 is presented in Figure 
5, which shows that most shorelines are 
eroding. If the erosion rate continues at 
today’s speed, coastal communities residing 
along the shorelines of barangay Bobon 
and Dahican will be significantly affected 
compared to the other coastal barangays. 
These areas will be experiencing severe 
shoreline erosion by the end of the 
century.In addition, the kappa statistics 
for 2013 and 2015 satellite images are 
0.85 and 0.87, respectively. This suggests 
that the satellite images used are almost 
perfect since both values are between 0.81 
and 1.00 based on the rating criteria 
of kappa statistics by Rwanga and 
Ndambuki (2017). The overall accuracy 
for both satellite images is 89%, which 
suggests that the satellite images used 
are good since the overall accuracy is 
greater than that of the kappa statistics. 
GPS equipment is used to validate the 
models generated. This will allow the 
enhancement of the accuracy of the 
erosion-accretion maps produced through 
the provision of precise geographic 
location data, ensuring that the findings 
from the observations are mapped reliably. 
The results of the actual reading of 
ground control points show that the 
RMSE is 0.05. This suggests that the 
generated erosion-accretion maps have a 
good prediction accuracy based on 
the RMSE ranges for model performance.
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 Integrating RS and GIS techniques 
is an effective tool for studying shoreline 
shifts. The use of RS and GIS can predict 
shoreline shifts occurring in Mayo Bay 
over the last decade, which are used for 
prediction using the EPR method. This paper 
will offer the essential information and 
primary knowledge on shoreline shift 
using RS and GIS on the shorelines of 
Mayo Bay, as there is currently a lack of 
published studies on shoreline shift in 
Davao Oriental and even the Philippines. 
The result of this study will aid the coastal 
managers of Mayo Bay, especially now that 
they are crafting their integrated coastal 
management policy along the Bay. It is 
highly recommended that the areas with 
the highest shoreline erosion rates identified 
in this study be prioritized and given 
attention to implementing suitable shoreline 
policies that are effective, efficient, and 
sustainable.  This study may serve as a 
baseline for future shoreline shift research 
in other coastal regions to allow a broader 
understanding of the dynamics of 
shorelines across diverse environmental 
settings. Specifically, Pujada Bay, the 
adjacent Bay, will benefit from this 
study as most of their shoreline 
policymakers are the same as Mayo Bay.
Future research might also consider
adding climatological factors or
components to their study further to
investigate the impact of climate change 
on shorelines.

RECOMMENDATIONS

 It would be ideal for the shoreline 
areas along Mayo Bay with higher 
shoreline erosion to be classified as 
high-risk zones prone to coastal erosion. 
These parts of the shoreline will be 
subjected to constant monitoring by the 
local authorities. Development in this 
zone is strictly prohibited. If possible, it 
would also be ideal for the Mayo Bay 
to be declared as a protected area same 
with its adjacent Bay, the Pujada Bay 
to preserve the physical characteristics of 
the Bay and ensure a long-term ecological 
sustainability.
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